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S y n o p s i s  

The approach of a quantum system to stat is t ical  equilibrium under the influence of 
a per turbat ion  is described by  a well known t ranspor t  equation, now often called master  
equation (see (I.1) hereunder). This equation holds only when the per turbat ion  is 
taken into account to lowest non-vanishing order. I t  has been stressed in a recent paper  
tha t  certain characterist ic properties of the perturbat ion,  easily seen to hold for actual  
systems (crystals, gases), p lay  an essential role in determining the irreversible nature 
of the effects described by  (I.1). On the basis of these properties it  was possible to 
derive the lowest order master  equation from the Schr6dinger equation by  making 
one assumption only, relat ive to the phases of the wave function at  the initial time. 
In  contras t  with the usual derivat ion which assumes the phases to be random at all 
times, the method just  mentioned is capable of extension to higher orders in the 
perturbat ion.  This extension is carried out  in the present paper. The essential results 
are the establishment of a generalized master  equation valid to a rb i t ra ry  order in the 
per turbat ion,  and the proof tha t  the long t ime behaviour of its solution corresponds 
to establishment of microcanonical equilibrium (the la t ter  being taken for the total  
hamiltonian,  per turbat ion included). The generalized master  equation exhibits with 
its lowest order version the essential difference tha t  i t  corresponds to a non-markovian 
process. The t ransi t ion from the exact  master  equation to its lowest order approxi-  
mat ion is discussed in detail .  I t  i l lustrates the existence of two time scales, a short  one 
and a long one, for very slow irreversible processes, as well as their  overlapping in the 
case of faster  processes. 

1. Introduction. W e  h a v e  s t u d i e d  in  a p r e v i o u s  p a p e r  1), t o  be  r e f e r r e d  

to  h e r e a f t e r  as  A,  t h e  t r a n s p o r t  e q u a t i o n  d e s c r i b i n g  t h e  a p p r o a c h  to  s t a t i s t i c -  

a l  e q u i l i b r i u m  of  a q u a n t u m  s y s t e m  u n d e r  t h e  i n f l uence  of  a s m a l l  p e r t u r -  

b a t i o n .  T h i s  e q u a t i o n ,  t h e  f o r m  of  w h i c h  is we l l  k n o w n  

dPc,/dt = ~ ( W c 4 P  ~ - -  W~P: , ) ,  (1.1) 

i n v o l v e s  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  P~  of  t h e  s y s t e m  o v e r  g r o u p s  of e igen-  

s t a t e s  of  t h e  u n p e r t u r b e d  h a m i l t o n i a n  H a n d  e x p r e s s e s  i t s  i r r e v e r s i b l e  t i m e  

e v o l u t i o n  u n d e r  t h e  a c t i o n  of  t h e  p e r t u r b a t i o n .  I t  h o l d s  o n l y  to  l o w e s t  

o r d e r  in  t h e  p e r t u r b a t i o n .  F o l l o w i n g  r e c e n t  p r a c t i c e  we sha l l  ca l l  i t  t h e  
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master equation, thus avoiding possible confusion with transport equations 
of the Boltzmann type. 

The first derivation of (1.1), given long ago by P a u l i 2), was based on the 
assumption that, when the total wave function is expanded in the eigen- 
states of H, the coefficients have at all times randomly distributed phases. 
As shown in A, this assumption, the unsatisfactory nature of which is 
obvious, can be avoided and replaced by an assumption on the wave function 
at one initial time (either randomness of phases or some other condition as 
stated in A) if one properly takes into account that  the system has a very 
large number of degrees of freedom and that  the perturbation satisfies 
certain special properties responsible for its irreversible effects and easily 
recognized on the systems met with in applications (gases, crystals, etc.). 
The formalism developed in A, while rather different from the one customary 
in quantum statistics, is better suited to the situation at hand because it 
gives a simple form to the relevant mathematical consequences of the facts 
just mentioned. With its help it was an elementary matter  to derive the 
master equation from the SchrSdinger equation under the conditions 
assumed for the initial value of the wave function. 

While the assumption of random phases at all times can be used despite 
its unsatisfactory nature to derive the master equation to lowest order in 
the perturbation, it is strictly speaking incompatible with the Schr6dinger 
equation itself, and would therefore be a completely erroneous starting point 
for an at tempt at extending the master equation to higher order. The method 
used in A on the contrary, being rigorously correct, opens the possibility to 
solve this rather natural problem of deriving a generalized master equation 
valid to arbitrary order in the perturbation. Such a generalized master 
equation is obtained and analyzed in the present paper 8). 

A detailed description of the special properties of the hamiltonian, 
unperturbed part and perturbation, is given in the next section. Section 3 
defines the quantity _P, the time-dependence of which is to be expressed by 
the master equation, and discusses its physical significance for the time 
evolution of the quantum-mechanical system. The mathematical derivation 
of the master equation, eq. (4.31), is given in Section 4, to general order in 
perturbation. The following section shows how the general master equation 
reduces for small perturbations to the customary form (1. I). In Section 6 
a detailed mathematical analysis is given for the asymptotic behaviour of 
the quantity P at long times. In Section 7, on the basis of proper assumptions 
on the symmetry of the transition rate matrix and the interconnection of 
states, it is established for finite but not too large perturbations that  the 
long time limit of P is in accordance with the predictions of microcanonical 
ensemble theory, the microcanonical distril~ution being taken for the total 
hamiltonian, perturbation included. 

The mathematical derivations carried out in Sections 4 to 7 are not simple. 
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Although we have relied more than once on earlier publications, the deyelop- 
ments needed to derNe the transport equation and to analyse its conse- 
quencesare of considerable complication and length. In a number of places 
we :have tried to alleviate their abstract character by inserting comments 
of-a more physical nature. To help further the reader who likes to follow 
the general arguments by applying them to an example, we have consid- 
ered briefly in the appendix, in its simplest form, a system composed of 
Bloch electrons and lattice vibrations (phonons) in a perfect crystal. Using 
the data of the appendix one can illustrate the various definitions and results 
of the general treatment. 

2. The hamiltonian and the basic representation. We are interested in 
quantum-mechanical many-particle systems with a hamiltonian H + / t V  
split into two parts. The first pact, H, is assumed to give an essentially 
complete separation of variables and would therefore, taken alone, produce 
no approach to thermodynamical equilibrium. The perturbation )IV ()i is 
a dimensionless parameter characterizing its size) mixes the many degrees of 
freedom left uncoupled by H and is entirely responsible for the irreversible 
behaviour. As examples we may quote non-conducting crystals (H contains 
then the harmonic part of the forces and )IV is the potential of the anhar- 
monic forces), the electron-phonon system in metals (H describes the free 
harmonic vibrations of the lattice and the conduction electrons in the periodic 
field of the ions at their equilibrium positions, the electron-phonon inter- 
action is the perturbation), quantum gases ()IV is here the potential of the 
intermolecular forces) etc. 

In  all such examples, considering the limiting case of a large system of 
given density (number of particles N and volume ~9 tending to infinity 
with a constant ratio N/[2), one finds a natural description of the unpertubed 
stationary states (eigenstates of H) in terms of elementary plane wave 
excitations. B y  the generic name excitation we understand phonons in 
crystals, phonons and electrons in meta!s, particles in gases, etc. Each of 
these excitations is characterized by a wave vector and possibly a polari, 
zation or spin index. The components of the wave vector vary by steps of 
order of magnitude ~9-½ ,~ N-~ and behave consequently in the limit of a 
large system as continuous quantum numbers, while the  unperturbed 
energy becomes a continuous function of them. Polarization or spin indices 
remain of course discrete. 

This occurrence of continuous quantum numbers and the continuous nature 
of the unperturbed energies are the molt  important features through which 
the very large size of the system manifests itself in the properties of the 
unperturbed hamiltonian. We postulate them generally and simplify 
matters a little by leaving out of consideration all discrete quantum 
numbers like polarization or spin indices. The unperturbed hamiltonian is 
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thus assumed to have a complete set of eigenstates I~>, each of which is 
characterized by  a collection ~ of quantum numbers (the quantum numbers 
of all excitations present) behaving as continuous variables in the limit of a 
large system. ~ may  contain an infinity of such quantum numbers since 
an infinity of excitations, may  be simultaneously present. The corresponding 
eigenvalue ~(~), defined by  

H I~> = 1~> *(~) (2.1) 

is assumed to be continuous in all the quantum numbers in x. We further 
normalize I~> in such a manner  that  (~ ] ~'> becomes, in the limit of a large 
system, a product of ~-functions for all variables involved. We write ac- 
cordingly 

(~ [~'> = ~(~ --  ~'). (2.2) 

How this normalization must be carried out in practice can be found in the 
appendix. 

As for the perturbation 2V, the fact that  i t  always extends over the whole 
system implies in the limit N -+ oo *) remarkable analytical properties of 
its matrix elements in the [~>-representation. These properties are best 
recognized in practical examples by expressing V for large but  finite systems 
in terms of emission and absorption operators of free excitations and going 
then over to an infinite system. We describe these properties hereunder in 
general terms. I t  is useful to check them in simple cases, e.g. by means of 
the equations in the appendix. In certain cases the first property holds only 
after parts of the diagonal matrix elements ~ (~[ V ]~> have been incorporated 
in the unperturbed hamiltonian H. 

Property (i) : Take the matrix element <~ [ V[ ~'> for those states x and ~' 
for which it is not identically zero (i.e. for x and ~' differing by  the few 
excitations absorbed or emitted by  V) and consider it for those states as 
function of all distinct quantum numbers contained in ~ and ~'. In  the 
limit of a large system this function exhibits a ~-singularity. This singularity 
expresses overall conservation of momentum (or wave vector). I t  does not 
imply a ~-singularity in the difference e(~) --  ~(~'). 

Property (ii): Take a higher order matr ix element of the type 
<~t IVA1V...AnV[ od> where A1 .. . .  An are diagonal operators in the Ix>- 
representation 

A~ [~> = [~> Aj(~). (2.3) 

Assume each eigenvalue Aj(~) a smooth function of all quantum numbers 
involved in ~. Consider this matr ix element  for those states ~, ~' for which 
it is not identically zero and regard it as function of all distinct quantum 
numbers in ~ and ~'. In  the limit of a large system, this function exhibits 

*) By this  l imi t  we always unders tand N ---> 00, Q ---> oo with finite densi ty  NfJ. 
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singularities of d-type originating from the singularities in <a" [V[ a">. In 
addition to the d-factor expressing overall conversation of momentum (or 
wave vector) further d-singularities may  occur. They are caused by  the fact 
that  the number of intermediate states over which one has to sum when 
calculating (for a finite system) the expression 

<a [VA1V... AnVia') = ~.~1 ... ~.<a [V] ~1> A(al) <al ]Vi a2>...A (an) <an [V[ a'> 

may be larger b y  one 5r more factors N (or IJ) when a is in a special relation 
to a' than otherwise. The number of such factors always turns dut to be one 
third of the number  of relations between quantum numbers in a and a'. 
Since' each quantum number (being a momentum component of an exci- 
tation) varies with steps of order N- t ,  one gets precisely a .d-singularity 
when the limit N ~ co is taken. Higher singularities are never obtained. 
An important  point is now the following. Among all d-singularities which 
are thus possible, none except one implies the equali ty of the unperturbed 
energies of initial and final states, i.e. implies a d-singularity in the difference 
,(a) --  ,(a'). The only exception is the d-singularity obtained when the state 
a and the state a' are identical, i.e. when a and a' have the same number 
of excitations present and these excitations all have the same quantum 
numbers. In other words, it is a singularity in ~(a -- a'). That  such a singu- 
larity involves a ~[~(a) --  ~(a')]-factor is obvious. This particular singularity 
plays a central role in the dynamics of the system and we split the matrix 
element (a ]VA1V ... AnV] a'> in a term containing it and a rest term 

<a [ V A l e  ... A,~V] a'> = ~5(a -- a')Fl(a) + Fu(a, a'). (2.4) 

The term d(a --  a') Fl(a) is called the diagonal part of the matrix element, 
and we call diagonal part  of the operator VA1V ... A n V  the operator 
{VA1V ... AnV}e defined b y  

{VA1V ... AnV}e [a> = ]a> Fl(a). (2.5) 

The rest term Fz(a, a') has no ~(a -- a')-singularity, nor has it any 6-singu- 
larity implying e(e) = e(,t'). 

Property (iii): All what has just been said on the matrix element 
<a IVA1 V ... A n V  [a'> holds of course also for the partial matrix elements 
(a [VAaVAI+IV ... AkV[ a'> with 1 < ~" < k < n. Since the latter are 
involved in the calculation of the former, one sees that  the d-singularities 
present in the latter will have to be taken into account when calculating 
the former b y  summation over intermediate stateg. In this summation. (still 
for a finite system) 

<a IVA1V ... AnY[ a'> = Y~el...~, <a [el a~> A(al) ... <an led a'>, (2.6) 

the singularities of (aa-1 [VAaV . . .A~V[  a~+l> manifest themselves as 
follows (we assume 1 < 2" < k < n, k --  ~" < n -  1 and put  ao = *t, an+l -~ a') : 
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w h e n  the state 0~j_ 1 is taken in some special relation to the state ~+1, the 
number of intermediate states ~l, ~j+l ... ~k becomes larger by  a power of 
N compensating exactly the decrease in the number of possible choices of 
the pair ~-1,  ~k+l. We need not consider all possible situations of that  kind. 
The only inportant ones for our purpose are those corresponding to the 
diagonal parts of partial matrices <~j-1 [VA~V ... A k V [  ~k+l>, i.e. to their 
6(~-1 -- ,tk+l)-singularities. Their effect in the summation (2.6) is simply 
that  the partial sum obtained b y  putt ing ~j-i :-&k+l gives even when 
N ~ oo a contribution of the same order of magnitude as the remaining 
part  of the sum. More generally, non-negligible contributions are obtained 
by  simultaneous consideration of diagonal parts of several submatrices, 
i.e. from partial summations in (2.6) where several pairs of intermediate 
states are kept equal 

*tjl-1 = ~ k l + l ,  ~ j2-1  = ~k2+ l  . . . .  (it  < kr, r : -  1, 2 . . . .  ). (2 .7 )  

A very important point is now that such a pairing of intermediate states 
only produces (for N --> oo) a non-negligible contribution when no two pairs 
are interlocked, i.e. when no relation of the form 

ir - -  1 < i8 - -  1 < kr + 1 < ks + 1 (r, s = 1,2 ...) (2.8) 

holds. This is our property (iii). Jus t  as the other properties it must be veri- 
fied in all practical cases. The general reason for its validity can be stated 
as follows: the transitions contributing to the diagonal part of <~j-1 [ V A a V . . .  

... A ~V] ~k+l> involve emission and reabsorption of excitations (or of holes 
' in a sea of excitations) and one has to sum over a large number (~-~ N) of 

states of these virtual excitations in order to get a non-vanishing contri- 
bution for N --~ oo. Therefore, in the case of interlocking diagonal parts as 
in (2.8), the state ~,+1 cannot be kept identical to the state ~j,-1 because 
it involves the additional excitations (or holes) contributing to the diagonal 
part  of <~j,-1 [VAjoV ... A k ,  VI m~o+l>. In order for simultaneous diagonal 
parts (2.7) to contribute, their relative positions have to be given b y  one of 
the equations 

ir - -  1 < kr + 1 < is --  1 < ks + 1 (2.9) 
o r  

i t - -  I < i s - -  1 < k s +  1 < kr + 1") (2.10) 

We have described the special properties exhibited by  the perturbation 
in the limit of a large system, as they can be verified in the actual examples 
and as they are needed for the development, of the general theory. They 
essentially amount to the occurrence of diagonal parts in operator products 
V A  I V  ... A nV ,  as expressed in (2.4). The latter equation must be understood 

*) T h e  cases  1 " r - - I  = i s - - 1  < ks + I < kr + 1 a n d  i r - - I  < ~ , - - 1  < k , +  1 = kr + 1 r e d u c e  
t o  t he  case  (2.9) b y  a c h a n g e  of n o t a t i o n .  
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as expressing the relevant asymptotic properties of the matrix element 
(~ I V A 1 V  ... AnV[ o/) for N -+ oo. The d-function symbolizes the occurrence 
of a definite additional power of N in the value of the matrix element when 

is identical to ~'. One should always realize that  both Fl(x) and F2(a, ~') 
may  still depend on N. In many applications these quantities actually 
have a "complicated asymptotic behaviour for N -+ oo. As recently shown 
by Hugenholtz for systems near their groundstate, this behaviour is amena- 
ble to a thorough analysis leading to a neat separation of the effects of the 
perturbation in size-dependent and size-independent ones, in agreement 
with the physical expectations 4). These questions, however, may be left 
out of consideration for our present purpose which is to establish to general 
order in JlV a statistical equation for the approach to equilibrium. All we 
have to know concerning the asymptotic behaviour of matrix elements is 
expressed in (2.4). 

As most readers will have observed, all what has been said until now on 
the hamiltonians of many-particle systems of quantum statistics applies 
as well to those of quantized fields in interaction. For this case diagonal 
parts of operators V A 1 V  ... A n V  (V being the interaction between fields) 
correspond to the well known self-energy diagrams of the Feynman-Dyson 
theory, taken however not only for one-particle states but for general states 
(lower b-singularities would correspond for example to vertex diagrams). 
The role played by the number of particles N or the volume 12 of the many- 
body system is taken over for fields by the volume of the large box in which 
one conventionally imagines them to the enclosed. We have shown in two 
previous papers 5), to be referred to as I and II, how for fields the properties 
mentioned above imply the physical (self-energy and cloud) effects most 
characteristic of their interactions. While the occurrence of such effects has 
long been intuitively clear and the explicit calculation of self-energies, is 
well known, most existing theoretical treatments circumvent the explicit 
consideration of cloud effects. 

Despite the similarities between the hamiltonians, the many-particle 
systems of statistical mechanics have evidently a physical behaviour very 
different from interacting fields: the essential property we expect them to 
exhibit is a general tendency to approach thermodynamical equilibrium, 
i.e. an essentially dissipative type of motion, whereas nothing of that  sort 
is to be found in the usual field-theoretical situations. The analogy between 
the hamiltonians is therefore not complete. One essential difference must be 
present, determining the dissipative or non-dissipative character of the 
motion under the influence of the perturbation. This difference has already 
been mentioned in I (section 4) and will be discussed at greater length 
hereafter. While I and II dealt with the non-dissipative case, the present 
paper is mainly concerned with the dissipative one. 

A number of the results obtained in I, mainly those of sections (I.2) and 
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(I. 3) *), will be used hereafter. They  follow, as shown in I, from the proper- 
ties of the hamiltonian listed above. Besides using the concept of diagonal 
part  of a product V A 1 V  ... A n  V (with A1 . . . .  A n  diagonal in the I~>-repre- 
sentation), they rely on the concept of irreducible diagonal part. Its definition 
is the following. Consider the contribution to the matrix element (2.6) which 
is obtained when each submatrix (~-1  I V A j V  ... AkV l  ~k+l>, (1 < ~" -<< k < 
< n ,  k - - l ' < n - -  1 , ~ 0 = x , ~ n + l = ~ ' )  is taken with neglection of its 
diagonal part, i.e. is taken for ~j-1 ~ ~k+l. For N -+ co this contribution 
to (2.6), considered as function of 0t and ~', can be separated in a part  
involving a ~ ( ~ -  £)-singularity and a part  involving at most weaker 
singularities. Let us write this separation in analogy to (2.4), 

~(~, - -  ~ ' )F' l (~  ) + F;.(~, ~'). 

We call ~(~ -- ~') F~(~) the irreducible diagonal part of the matrix element 
(o~[VA1V . . .AnVIod>,  and we define the irreducible diagonal part  
{ V A 1 V  ... AnV} ,a  of the operator V A 1 V  ... A n V  in analogy to (2.5) by  

{ V A 1 V  ... AnV} ,a  le> ----le> F;(~). 

It  is also useful to define the non-diagonal part {VA1 V ... AnV}ncZ of the 
operator V A 1 V  ... A n V .  I t  is the operator, the matrix elements of which 
are obtained by keeping in (2.6) all states o~, o~1 . . . .  o~n, o~' different from each 
other, the value of the matrix element for ~ = ~' being defined as the limit 
of its value for ~ :/: a' when e' -+ ~. 

The extension of these concepts to operators of the form A o V A 1 V  ... 
... A n V A n + I  with all A's  diagonal **), and to sums of such operators, is 
obvious and can be found in I, p. 907. 

3. The transition probabilities. We shall define in the present section the 
quanti ty  P, the time evolution of which will later be expressed by means 
of a master equation to general order in the perturbation. Let us consider 
the wave function 90 of the system at an initial time t = 0 and let us expand 
it in the Ix>-representation 

90 = f  I=> d= c(~). (3.1) 

The expansion has been written for the limiting case N ~ co, replacing 
summation over ~ by integration, since in this limit all quantum numbers 
are continuous. According to the orthonormalization equation (2.2) we have 

490 ]90> = f lc(~)]9, d~. (3.2) 

We assume this expression to have the value unity. 

*) This notation for the sections of I, as well as the notations (I. 1.1.) or (A.I.I) for equations of 
I or A, are self-explanatory. 

**) From now on the expression diagonal operator will be used for operators diagonal in the lat)- 
representation. 
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Choosing the units so that  }~ = I, the wave function at time t is given by 

Ft = Ut~o, (3.3) 

Ut ----- exp [-- i(H + 2V)t]. (3.4) 

We are interested in the occupation probabilities at time t of groups of 
states [,¢> which for finite but large N contain many  states but  are still 
narrow enough to give a very small variation of the quantum numbers over 
the group. Since for N -+ oo all quantum numbers become continuous, such 
a group corresponds in this limit to an infinitesimal volume element dot in 
the space of the quantum numbers. The occupation probability of such a 
group can be written Pt(x) d,¢, and the probability density Pt(~) is such that,  
for a diagonal operator A with 

A I,~> = Io0 A(o~), (3.5) 
one has 

<~'s IA[ 95> = fA(cc)ps (o~) dcx. (3.6) 

Inversely, the occupation probability density Ps(~) can be uniquely determin- 
ed from a calculation of (3.6) for every diagonal A having as eigenvalue 
A (c¢) a smooth function of the quantum numbers in ,¢. From (3.3) one has 

(gt [AJgD = (90 ]U-tA Us[ 90). (3.7) 

If one expands Ut and U-t in powers of the perturbation, the operator 
U-tA Us becomes a sum of a diagonal operator and an infinity of products 
AoVA1 ... VAn+I with diagonal A0 . . . .  An+l. Consequently it has a diagonal 
part. We separate it out in the matrix element 

<o~ I U - s A  Usl ~'> = ~(o~ - -  o~') l:(,z) + 12(,x, o(), (3.8) 

[2(~, ~') having as usual only singularities weaker than ~(,¢ -- ~'). Obviously 
/1 and/9, depend linearly on the arbitrary diagonal operator A. These quan- 
tities are therefore linear functionals of the numerical function A (,d'), in 
formulae 

/1(~) = f A(~") d~" P(t l ~"~), (3.9) 

/2(~, o¢') = f A (~") do~" I(t [ ~"0¢0¢'). (3.10) 

The functions P(tlo~"~) and I( t l  ~"~oc') thus defined-depend only on the 
system considered and on the variables indicated between brackets; they  
are independent of A. Inserting our equations in (3.7) we obtain 

(gt IA[ 9D = f A(~") d~(" f P(t I ~"~) d~¢ ]c(~)l ~ 

+ f A (~") dx"fI(t[c('o~od) d~ dx' c*(~) c(cd) (3.11) 

and for the occupation probability, by comparison with (3.6), 

p,(x") = f P(t [ c¢",¢) d,¢ [c(a)l 2 + f I(t [ ~"~') d~ d~' c*(o~) c(~'). (3.12) 
Physica XXl I I  29 
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The equations just obtained exhibit a very important feature, the separate 
occurrence in the righthand sides of terms depending only on the absolute 
squares of the initial amplitudes c(~) and of terms depending on the relative 
phases of c(a) for various x (i.e. on the x-variation of the phase). The former 
involve only the initial occupation probabilities Ic(~)lL whereas the latter 
are of the nature of interference terms (whence the notations P and I). The 
fact just mentioned, which could also be described as a separation of the 
density matrix, is a direct consequence of the occurrence of diagonal parts, 
i.e. of the special properties of the hamiltonian described in the previous 
section. 

The separation which thus appears between phase-independent and phase- 
dependent terms leads directly to the distinction between initial states q0 
with "random" or "incoherent phases" and those with "special phases". 
Loosely speaking, an initial state with random or incoherent phases will be 
such as to give a negligibly small value to the interference term 

f I ( t l  ~"~ ' )  d~ d~' c*(~) c(~') (3.13) 

for every t in the time interval of interest, whereas a ~00 with special phases 
would give it a non-vanishing value. I t  is difficult to find for this distinction 
a formulation at the same time complete and general. Of course, if instead 
of one initial state we are willing to consider an ensemble of such states 
with prescribed Ic(a)l and random (more exactly uniformly distributed) 
phases, the average value of (3.13) will be zero. One must however expect 
much more to be true. The integral (3.13), when taken for a single initial 
state selected in some sense at random, must be vanishingly small most of 
the time, at least if one limits oneself to the values of t in a finite interval 
]t I < T, where T can be chosen large compared to the time needed for the 
approach to statistical equilibrium *). For example, if the phase of c(=) 
varies very rapidly with ~ as compared to the phase of exp[i,(a)T], the 
expression (3.13) will certainly be very small, because the phases of I(t ] ,t"a=') 
can certainly not vary fast compared to the expression mentioned. Since it 
seems reasonable to expect the phases of an initial state, when chosen at 
random, to vary rapidly most of the time, we may  expect that  (3.13) will 
be negligible for an overwhelming majori ty of initial states. 

Fur ther  support for this view can also be drawn from an analogy with 
the quantum theory of collision processes. Let us take the simplest example 
of collision, elastic scattering of a particle by a target at rest. The hamiltonian 
can be written in the form H + ~tV, H representing the kinetic energy of the 

*) T h e  l a t t e r  t i m e  is here  f in i te  b e c a u s e  we  t r e a t  t he  p e r t u r b a t i o n  as f ini te .  I n  A on  t h e  c o n t r a r y ,  

the l i m i t i n g  case  2. --~ 0 w a s  cons ide red ,  T t e n d i n g  to  i n f i n i t y  as 2.-3. Th i s  is t he  r e a s o n  w h y  we cou ld  
neg l ec t  in  A al l  i n t e r f e r ence  effects  even  for  in i t i a l  s t a t e s  w i t h  s lowly  v a r y i n g  p h a s e s :  al l  these 
effec ts  t o o k  p l ace  in a t i m e  s h o r t  c o m p a r e d  to  T. S u c h  is n o t  t he  case  here .  B o t h  here  a n d  in A the 
P o i n c a r 6  cyc les  a re  in f in i t e  b e c a u s e  we  dea l  w i th  the  l i m i t i n g  case  of a n  inf in i te  s y s t e m .  
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particle and ~V the interaction between particle and static target. The 
states le) are plane waves characterized by continuous quantum numbers, 
just as was the case until now. The number of these continuous parameters 
is now however limited to three, and the perturbation V is such that  none 
of the singularities described in Section 2 occur in matrix elements (el V A 1 V  
... A n V  re'>. The quanti ty  P defined by (3.9) consequently reduces to 

p ( t  I - -  - e ) ,  

giving for the occupation probability density at time t 

Pt(o~") = [ c(e")l 2 + f I(t  [ e"ee') d~ de' c*(e) c(e'). 

The time-dependence of Pt, i.e. the very occurrence of scattering, is here 
entirely determined by the interference term. It  is in this case quite clear 
in which sense can be asserted that  the interference term is negligible for 
most initial states. Unless the c(e)'s have special singularities, the initial 
state (3.1) represents a wave packet, and random choice of the pkases of this 
wave packet implies random choice of its location in space. The occurrence 
of scattering on the contrary requires proper aiming of the incoming 
particle at the target, i.e. a proper correlation between initial position and 
direction of motion. Consequently the interference term (3.13) can in this 
case safely be said to vanish most of the time for random choice of the 
phases of the amplitudes c(e). 

This rather lengthy discussion was presented to support the view that  the 
interference term in (3.11) and (3.12) will only contribute for a minority of 
"special" initial states, the occupation probability reducing for all other 
states to the simple expression 

pt(e') = f P(t ] e'e) de ]c(e)[~. (3.14) 

The latter equation is equivalent to 

(gt [AI 9D = fA(a ' )  de' f P ( t  I e'e) de I c(e)l 2. (3.15) 

Our further analysis will be devoted to a s tudy of the quanti ty P(t l  e'e). 
This quanti ty  is entirely defined in terms of the hamiltonian and of the 
]e>-representation, and its s tudy is a purely quantum-mechanical problem 
from the t reatment  of which all extraneous arguments, statistical or others 
must and will be barred. From (3.14), for most initial states, the quant i ty  
P(t] e'e) directly expresses the occupation probabilities at time t in terms 
of the occupation probabilities p0(e) = I c(e)12 at time zero. Clearly P(t l e'o~) 
is the transition probability density from e to ~' in the time interval from 0 
to t, assuming randomness of phases at time 0. Although the present paper 
will be entirely concerned with this transition probability, we do not mean 
to imply that  the interference function I ( t l  e"ee') is deprived of interest, 
nor that  its s tudy would present abnormally high difficulties. The physical 
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importance of interference effects in dissipative systems can be illustrated 
by many examples. To quote only one, simultaneous excitation of two 
additional phonons in a crystal lattice in thermal equilibrium may  give 
rise, for special configurations, to mutual  scattering of the two phonons 
before they have covered their whole mean free parth and have vanished 
by dissipation. As for the quantum-mechanical s tudy of I(t[ oJ'oa~'), it can 
be tackled by the methods used hereafter and applied already in I and II  
where collision processes, i.e. interference effects, were extensively studied. 

In A the quantum-mechanical calculation of P(tl o~'o~) was performed to 
lowest order in ;t, more exactly in the limiting case ~ -+ 0, t -+ oo, 22t finite. 
Written in our present notation (which is more convenient than the notation 
of A for a s tudy to general order in ~), the main result of A was that  the 
transition probability density verifies the differential equation (see (A.6.1 1)) 

dP(t]o~ao)/dt = 2~22f6[e(=¢) - -  e(c¢')] Wt0) (c¢~') da' P(t [ ='*¢0) 

- -  2 ~ 2 f d ~  ' . ~[s(£) -- e(cc)] W(O)(£~) . P(t ] ~o) .  (3.16) 

This equation is in more explicit form and in our notation the master equa- 
tion (1.1). The kernel WCO)(a'a) is defined by the identity 

{VAV}a Ic¢>= [~>fA(£)  d £  W(o) (~'~) (3.17) 

for arbitrary diagonal A with eigenvalues A(£).  Equation (3.16), which 
holds for t > 0 but  would apply to t < 0 after changing the sign of the 
righthand side, is characteristic of a stochastic process of Markov type, a 
feature which we will find not to hold to general order in the perturbation. 
The quantities W¢0) play the role of transition rates, i.e. of transition 
probabilities per unit time. Eq. (3.16) must be supplemented by the initial 
condition 

P(0 I ~0)  = ~(a--a0) (3.18) 

which follows immediately from the definition (3.8), (3.9) of P and is exact 
to all orders of the perturbation. 

Two remarks will be made before we start in Section 4 the s tudy of P. 
The first one concerns the dominant role played in all our considerations 
by the [cO-representation, despite the fact that  it is of course not intrinsic 
to the many-particle system considered. In A, where the perturbation was 
assumed to be very small (;t -> 0), the use of the [~>-representation could be 
entirely motivated by the property that  the [a>'s are the eigenstates of the 
hamiltonian in the limit ~ ---- 0. Here however we assume the perturbation 
to be finite and the argument just mentioned consequently fails. The 
special significance of the [cO-representation for the many-particle systems 
of quantum statistics must be attr ibuted to another fact, easily verified on 
all actual examples, to know: the simple relation of this representation to 
the physical quantities of greatest interest in irreversible processes. The latter 
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quantities have usually a simple mathematical expression in terms of one- 
particle operators, and these operators themselves have in crystals as well 
as in gases simple matrix elements in the [e>-representation *). It  has often 
been remarked that the irreversible behaviour of a many-particle system is 
not t ruly an intrinsic property of the system but  is part ly determined by  
which class of properties of the system the observer is looking at. In other 
words, it is not for every operator 0 that  one can expect the expectation 
value (gt ]0[ ~0D to tend in the course of time (starting from most initial 
states) toward the average value (0)eq calculated from equilibriu/n statistical 
mechanics. From the experimental evidence we only know this property to 
hold for special physical quantities 0, and it is an easy matter  to construct 
other operators for which it does not hold. On the basis of experience the 
representation [e> seems to provide a natural way to characterize operators 
0 for which <gt 101 ~0~> can be expected to tend toward (0>6q. To state it 
loosely, these operators will be such as to have simple matrix elements in the 
[e>-representation, even in the limiting case of a very large system. A 
sharper formulation of this statement is of course required, but  no at tempt  
to find one has been made until now. The only operators 0 to be considered 
in the present paper are diagonal operators A, for which the approach of 
(gt [A[gD toward eA >ca for most initial states will indeed be established on 
the basis of Eq. (3.15) (see section 7). As seen from (3.15), all we need for 
achieving this goal is the asymptotic value of P(t[ e'e) for large times. An 
extension to other operators 0 would of course be desirable. It  could in 
principle be carried out by  essentially the same modification of the techniques 
used here as would be needed to incorporate into the theory discrete quantum 
numbers for polarization and spin. 

Our second remark concerns the vanishing of the interference term (3.13) 
for a particular type of initial states 90: wave packets of very narrow ex- 
tension in e: 

q,o =f,~. Ioo de c(e). (3.19) 

The integration extends over a very small domain Ae around a state e0. 
Such a wave packet can be considered as an approximation to the unper- 
turbed state [e0>. Normalization requires. 

f, la [c(ct)12 de ---= 1 (3.20) 

so that, from the Schwarz inequality, 

[fz~c(e) d~l -<< Act. (3.21) 

For very small Ae the interference term (3.13) is negligible. As a matter  of 
fact it can be written 

I(t l e"eoo~o) IfA~c(e) de [2 

*) This s i tuat ion is radically different from what  happens  in field theory, where the unpertt trbed 
representa t ion 100 is formed by  the unobservable bare particle states.  
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and from (3.21) it is seen to tend to zero for A¢¢-+0. The occupation prob- 
ability (3.12) reduces in this limit to 

#d=) = P(t  I o,~,o). (3.22) 

This gives a new illustration of the physical significance of P as transition 
probability density. 

4. General properties o/ the system and master equation. For the lowest 
order in the perturbation the transition probability P(t I ~'c¢) was calculated 
in A by taking the defining equations (3.8), (3.9) and carrying out a straight 
expansion of U_tA Ut in powers of 2, retaining the terms which do not 
vanish in the limit ~t --> 0, ~t2t finite. The result obtained turned out to be 
the series expansion solution of the transport equation (3.16), i.e. the solution 
which would be derived from (3.16) and (3.18) by mere iteration. Besides 
its lack of elegance, such a method is very cumbersome to extend to higher 
orders in 4. The method to be followed presently is different and makes 
essential use of the resolvent 

Rz = (H + ~V -- l) -1, l complex number, (4.1) 

an operator already applied in I and II  to the s tudy of non-dissipative 
systems. 

The main properties of the resolvent for the type of hamiltonian here 
considered are the same for systems of statistical mechanics and for inter- 
acting fields; they have been derived in Section 3 of I. These properties 
concern the diagonal part  D~ of the resolvent. Clearly, the s tudy of the 
diagonal part  of R~ on the basis of properties (i), (ii), (iii) of Section 2 pre- 
supposes that  Rz can be expanded in powers of the perturbation, since this 
expansion is needed to bring Rz in the form of a sum of operators AoVA 1 ... 
... VAn+I with diagonal Al's. It  is however only for l non-real that  conver- 
gence of the expansion must be assumed. Furthermore,  the formulation of 
the properties of Dz and the further development of the theory no longer use 
a complete expansion in powers of ~ and thereby differ in an essential way 
from what ordinary perturbation calculus would give. One can say that  
all our equations differ from the corresponding results of ordinary pertur- 
bation theory through the fact that  a number of partial summations have 
been carried out in closed form *). The possibility of such partial summations 
follows from the occurrence of diagonal parts, and our method seems to be 
well suited to take advantage of it. Still the summations explicitly carried 
out are only partial and we have to assume convergence for all remaining 
series. 

Let us recall briefly the main properties of the resolvent for the limiting 

*) Typical examples of these summations are found in I, section 3, Eq. (I.3.5) and (I.3.B). 
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case of a large system (N -+ oo, N/~ finite). They have been derived in I 
under normal conditions of regularity of all functions involved, with due 
regard of course for the singularities implied by properties (ii), (iii) of section 
2. The diagonal part  Dz of Rz can be written in the form 

Dz = ( H  - -  l - -  ~ 2 G ~ ) - I  ( 4 . 2 )  

where Gz is a diagonal operator satisfying the identity (see (I. 3.13)) 

Gz -~ { V D y  -- 2VDzVD~V + ...},a. (4.3) 

This identity can be used to calculate Gz by successive approximations. The 
resolvent itself becomes, as stated in (I.3.15), 

Rz = Dz - -  2Dr {V -- 2VDzV + 22VDzVD~V --  ...}na~Dz. (4.4) 

We denote by G~(~) and Dl(~) the eigenvalues of Gz and Dz for the state 
[ot>. From (4.2), 

Dz(0¢) = [s(0¢) -- l --  ;t2Gz(~)]. (4.2 bis) 

As a function of the complex variable l, G~(~) is holomorphic in the whole 
complex plane except on a portion of the real axis *). I t  approaches zero 
as rl[ -1 when l -+ oo **). I t  verifies 

= (4.5) 

where the star denotes the complex conjugate. Furthermore 

Im[Gt(c¢)] > 0 for Ira(l) > 0, unless G~(~) = 0 for all l. (4.5 bis) 

For l approaching a point E of the real axis, Gz(~) approaches a finite limit 

lim0>n_.0 GE+i~(oO = K~(oc) 4- iJE(o 0 (4.6) 

where KE(o 0 is real and J~(~) real non-negative. The latter quant i ty  is 
positive on certain intervals of the E-axis and vanishes elsewhere; these 
intervals depend on oc. 

The above properties imply that  Dl(~) is holomorphic in l in the whole 
complex plane except on a portion of the real axis and that it approaches 
zero as [l]-i for l -+ oo. Further,  from (4.5) and (4.5 his), 

O,.(,t) = [D~(m)]*, Im [Dz(a)] > 0 for Ira(l) > 0. (4.7) 

In contrast to the case of Gz(m), the behaviour of Dz (m) for l approaching the 
real axis may  be of two different types. Clearly, the limit of Dz(m) for l--+E, E 
real, is finite whenever one or both of the inequalities 

Y E ( m )  > 0, s(m) - -  E - -  a2KE(~) :# 0 

*) Gl(ct) and Dt(c~) often have analytical continuations accross the real axis, from above and from 
below. They will however play no part  in our considerations. 

**) Except possibly when l remains close to the real axis. This provision will always have to be 
made when we talk about the behaviour of analytic functions at infinity. 
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hold, but  it becomes infinite when one has simultaneously 

JB(~) = 0, e(~) --  E -- )~2KE(~) = 0. (4.8) 

In the latter case Dt(~) has a pole at l = E *). The absence or presence of 
poles in Dz(~) is therefore determined by  the absence or presence of common 
roots for the equations (4.8). 

The two possibilities thus encountered correspond to the distinction 
between the state ]~> having a dissipative or a non-dissipative behaviour 
under the effect of the perturbation. This statement deserves some comments 
in addition to what was said in I, Section 4. What  we mean by  it can be 
described most simply as follows. Select as in (3.19) an initial state 90 
forming a wave packet of very narrow extension A~ around  :~0. A time t 
later the state has become 9t, given by  (3.3) and (3.4). Let us calculate in 
the limit of small A~ the probabili ty qt(~o) to find back the system in its 
initial state 9o. I t  is 

qt(~0) = lim~-~0 1<9o I 9t>[ ~'. (4.9) 

A calculation similar to the derivation of (3.22) shows that <90 ] 9D is, 
in the limit of small A:q identical to the eigenvalue for ~o of the operator 

{U,}a = (i/2~) {fr exp (-- ilt) Rt dl}a 

= (i/2~) fr exp. (-- ilt) Dt dl (4.1 O) 

where 7 is a contour in the complex plane encircling a sufficiently large 
portion of the real axis and is to be described counterclockwise. We have 
copsequently 

qt(ao) = (2a)-2 I f r  exp (-- ilt)D~(o~o)d/[ 2. (4.11) 

This formula directly implies that  qt(o~o) tends to zero for t -+ oo when Dz(x0) 
has no pole, and tends to a positive limit when D~(a0) has one or more 
poles **). 

In the first case it is natural to describe the behaviour of the state ]a0> 
as dissipative, because under the influence of the perturbation this state (or 
more exactly the properly normalized state 9o for very small Aa) is so deeply 
modified that, eventually, it gets completely spread out over the other 
states la> and contains its initial value only as a negligibly small component. 
One should note that  such a radical effect does not in any way require the 
perturbation to be strong. On the contrary dissipative behaviour can occur 
for arbitrarily small perturbations, the vanishing of the probabili ty qt(o~o) 
demanding then correspondingly long times (of order 4-2). 

*) As established in (I.5.8), (I.5.9) such a pole of D~(~) is a lways of order  one. Dl(0t) has never  
non-real  poles. 

**) See also loc. cit.3). We m a y  r emark  tha t  I <~00 I 9t> 12 always tends  to zero for t - +  oo i f  the 
limit of small  Ace is no t  taken.  This  effect, also present  when  there is no per turba t ion ,  is jus t  the  
ord inary  spreading of a wave  packet  and  is of no interest  to us. 
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In the ca~e where Dd~0 ) has one or more poles, the state I~0> (more prop- 
erly 90 in the limit of small A~), although of course affected by the per- 
turbation, always retains a non-vanishing component identical to its initial 
value. This situation, which we call non-dissipative, would occur in a con- 
vergent field theory, where the bare particle states are present with non- 
vanishing probability in the corresponding dressed (i.e. observable) particle 
states. We may  also remark that  in the quantum theory of collision pro- 
cesses, already quoted for comparison in Section 3, the function Dz(~0) re- 
duces to its unperturbed value [~(~0) - - / j - l ,  so that  qd~0) is tinity at all 
times. This means that  a true plane wave state (corresponding to the limit of 
small A~) is perturbed by a collision process only in a negligibly small 
fraction of its totality, as is physically obvious since the collision can only 
take place in a limited region of configuration space whereas the extension 
of the plane wave is of course infinite. 

In I and II we gave a systematic s tudy of what may  be called non- 
dissipative systems, i.e. systems for which all states I~> are non-dissipative. 
We made the slightly more restrictive assumption that  for each ~ the equa- 
tions (4.8) have one single common root E(~), in the neighbourhood of 
which JE(~) vanishes identically. This is typically the situation which would 
occur in a convergent field theory with positive masses for all fields (neither 
infra-red nor ultra-violet divergences). Formally a system can have part 
of its states dissipative, part  of t hem non-dissipative. For the many-particle 
systems of quantum statistics one should expect the quasi-totality of 
unperturbed states to be dissipative *). It  seems reasonable to call them 
dissipative systems and our main interest goes to them in the present paper. 
I t  is for them that  consideration of the transition probabilities P(t]odo 0 
and of a master equation is of actual importance. In the present section the 
properties of P(t [ ~'~) and the master equation will however be established 
in full generality, irrespective of the dissipative or non-dissipative character 
of the [~)'s. The algebraic form of the master equation is completely inde- 
pendent of this distinction, although of course the nature of the solutions 
will be radically different in the two cases. This situation is already familiar 
in the limiting case of small perturbations, where the lowest order master 
equation (3.16) is of true interest only when 

5[t(a') - -  e(a)] W(°) (~'a) :/: 0. (4.12) 

The validity of this inequality for some states la'> can easily be shown to 
characterize the state [a> as dissipative in the approximation considered. 
The master  equation (3.16) remains nevertheless valid when the lefthand 
side of (4.12) vanishes. In the field-theoretical case for example, where all 

*) One cannot  expect  all s ta tes  to be dissipative. For instance the grqund s ta te  should be non- 
dissipative. I t  might  perhaps also be a fairly general feature tha t  very low lying excited s tates  behave 
non-dissipatively,  as is suggested by the phenomena  of superfluidity and superconductivi ty.  
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unperturbed states are non-dissipative, this quanti ty  vanishes for all x and 
~t', so that  (3.16) reduces to " 

dP(t [ x'o~)/dt = O, 

or, on account of (3.18), 

P ( t l  - -  - for  a n  t. 

In the approximation considered (2 --> 0) this result is correct but  of course 
of little interest. Its extension to general order will be given at the end of 
Section 6. 

We now go over to the investigation of P(t I ~'o~) to general order in 2. We 
use as in (4.10) the representation of Ut by a contour integral over the 
resolvent and introduce it in the definition (3.8), (3.9) of P(t[~'o  O. Clearly 

U - t A  U t  = - -  (2ar)-9"fy dlf~, dl' exp [i(l --  l')t] RzARv, (4.13) 

~, being the same contour as in (4.10). Let us define the function Xu,(~'~¢) by 
the identity 

{RzARv}a I*¢> = [*¢> f A (~') d~'Xu,(~'~). (4.14) 

As usual A is an arbitrary diagonal operator of eigenvalues A(a'). The 
quanti ty  Xu, approaches zero as II[ -1 for l -+ oo, as [l'l-1 for l' -+ co, as 
[ll'[ -1 when l and l' ~ oo. Introducing (4.14) into the diagonal part  of (4.13) 
and comparing with (3.9) one finds 

P(t[ a'=) = -- (2=)-2f~ dlf~ dl' exp [i(l --  l')t] Xu,(~'o O. (4.15) 

We establish next a simple identi ty for Xu,(a'~). Define a new function 
Wu,(='~) by  the equation (A arbitrary diagonal operator) 

{ ( V - - 2 V D W + . . . )  A ( V - - 2 V D v V + . . . ) } , a  l~>=l~)fA(~ ' )d~ '  Wu,(~'~). (4.16) 

Comparison with (3.17) shows that  

limA_~ 0 Wu,(~'a) = W (°) (a'a). (4.17) 

Furthermore, one has also from the definition 

limu,_~** Wu,(~'a) = W ~°~ (~'~). (4.18) 

The diagonal part  in (4.14), after insertion of (4.4), can be reduced to 
irreducible diagonal parts, whereby property (iii) of Section 2 plays a central 
role: all simultaneous diagonal parts occurring in this particular reduction 
have the relative configuration (2.10). The r4sult is an expression of X in 
terms of W, 

Xu,(~c¢0) --  D~(~)Dv(o 0 ~(~ --  ~o) + 22 D~(~)Dv(*t)[Wu,(~o) + 

+ 22fWu,(o~*q)Dt(al)Dv(xl) d~l Wu,(ala0) + ...] Dt(o~o)Dv(ao). (4.19) 
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On the other hand, the fundamental  identity (4.3), taken for two values of 
l, gives by subtraction 

Gz -- Gv = {(V -- ~(VDzV + ...) (Dz - -  Dr) (V  - -  2 V D v V  + ...)}ta. (4.20) 

On account of (4.16) this is a simple identity for the function W: 

Gz(~) -- Gv(~) = f [D~(~') -- Dv(~')] d~' Wu,(~'~). (4.21) 

It  is convenient to introduce a new notation for the quanti ty  under the in- 
tegral 

~Vu,(~'a) = i[Dz(a') -- Dz,(a')] Wu,(a'*t). (4.22) 

Remark however that  (4.2) gives 

Dz -- Dv = [ ( / - -  l') + A2(Gz - -  Gv)]DzDv. (4.23) 

Consequently the identity (4.21) can be written 

(l - -  l')D~(~)Dv(~l = Dz(~) - -  Dv(o 0 + i22 f do~' Wu.(oda)D~(oODv(~). (4.24) 

I t  is then a simple mat ter  to convert it into an identity for the function 
X. Multiplication of (4.19) by l - -  l' and application of (4.24) gives 

( l  - -  l') Xu,(*txo) = [Dz(*t) -- Dv(~)] 8(a -- ~0) 

- -  i,tg"f Wu,(a~') d~' Xu,(~'ao) + i A 2 f d ~  ' Wu,(a'~) Xu,(*ta0). (4.25) 

The first part  of the derivation is thereby ended. The only task left is to 
transform (4.25) into an equation for the time evolution of P( t [  a~o). The 
form of the exponential in equation (4.15) shows that  P depends only on an 
integral of Xu, over l + l' for fixed difference l -- l'. The identity (4.25) 
on the other hand refers to Xu, itself. As a consequence it was not found 
possible to derive an equation for the quanti ty  P itself, but  P could be written 
as an integral over another quanti ty  Pv,(t I *¢ao) for which (4.25) directly 
implies a master equation. The quanti ty  PE(t ] ~ao) is defined mathematically 
for t ~ 0 as 

PE( t [ aao) = (2a9') -1 s(t) f v  dl exp (2ilt) XE+~, E-~ (aa0), (4.26) 

E being real and y being the same type of contour as before. The symbol s(t), 
meaning sign of t, stands for t--1 It[. We state that  for t :/: 0 one has 

P( t  [ ~ o )  = f~_.  d E P E  (t[ ~0).  (4.27) 

To establish this relation, replace in (4.26) the contour ~ by two lines 
l = E '  4- i~? with ~ > 0 and very small. Only one of these hnes (the One 
where Re (ilt) > 0) gives a non-vanishing contribution. After substitution 
of (4.26) into (4.27), transform the double integral obtained to the new 
variables E + E' .  This is possible for t :# 0 because the exponential factor 
involving t ensures convergence. The result is readily seen to be (4.15) with 
the contours taken as straight lines along the real axis. 
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On the other hand the time derivative of PE contains according to (4.26) 
the combination 2l XE+I, E-Z, which is the lefthand side of the identi ty (4.25) 
for the speciM suffices involved; we replace it by  the r ighthand side. Let us 
now define 

mR+Z, E-g(~ ~). (4.28) wE(t I c¢'c¢) = (2zc2)-lf~ dl exp (2ilt) ~ 

One easily establishes 

s(t) fy  dl exp (2ilt) WE+s, E-g (~Sc¢~) XE+~, E-~ (~1c¢0) = 

4=S./0 t dr' WE (t -- t ' l  ~S~2) PE(t'[ c¢1~0), (4.29) 

a result for which the vanishing of WE+s, E-g and XE+z, E-g ffor l ~ oo is re- 
levant. Introduce still the further definition 

/E(t I c¢) = (2~2) -1 is(t) fy  dl exp (2ilt) [DE+z(*¢) --  DE-z(*¢)]. (4.30) 

With the help of (4.29) and (4.30) the time derivative of PE finally takes 
the form we were aiming at: 

dPE(t ] c¢~0)/dt = ~(~ -- *¢0) [E(t ] o~) + 2z~F" f~ dt' f wE(t -- t' ] o~') 

dodPE(t' l o~'o~o) --  2~29" f~ dt' f dodwE(t --  t' l *¢'~) PE(t' [ ~o~o). (4.31) 

The integro-differential equation (4.31) is the master equation to general 
order in 2. Its main structural differences with the lowest order equation 
(3.16) are apparent in the righthand side: they consist in the presence of 
dn inhomogeneous term (the term in rE) and in the time integration over the 
previous evolution of the system (non markovian nature of the process). 
Both features can be shown to be manifestations of the coherent phase rela- 
tions present in the wave function 9t at all times t ve 0. We shall see in the 
next section how they become negligible in the limit of small perturbations. 

The master equation (4.31) for PE must be supplemented by an initial 
condition at t = 0. This condition is easily derived from the definition (4.26) 
of PE. As we have seen, XE--LE+~ decreases as ]l] -2 for l -+ oo. Putt ing t = 0 
in (4.26) and deforming the whole contour to infinity, one gets a vanishing 
result, so that  

PE(O ] ~oto) = O. (4.32) 

With this initial condition the integro-differential equation (4.31) deter- 
mines PE uniquely for all times, positive or negative. One may  wonder how 
(4.32) can be compatible with the fact, already noted in the previous section, 
Eq. (3.18), that  the initial value of P(t l  o~o) is' ~(~--~0). The reason is that  
(4.27) does not hold for t = 0. As stressed before, non-vanishing of t is 
necessary for P to be the integral of PE over the energy E. 

I t  must be noted that  the quantities/E, wE and PE are real for all values 
of their (real) arguments. For /E  the reality follows from (4.30) and the first 
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equation (4.7). For wE one notices that, from (4.16), (4.7) and the hermiticity 
of V, 

[Wa,(~'~)]* ---- Wv,z,(cdc¢). (4.33) 

Reality of (4.28) then easily results. The reasoning for PE is similar, using 

[Xu,(0¢'0¢)]* = Xz,.,.(~'Q¢ ). (4.34) 

In view of the importance of PE, - it is this quanti ty  rather than P itself 
which satisfies the general master equation -,  it is good to get some insight 
into its physical significance. One may  say loosely that  PE expresses, how 
much of the transition probability P is contributed by the total energy 
shell H + 2V ----- E. This interpretation can be justified by the following 
considerations, which show at the same time how it has to be understood 
in more accurate terms, l e t  A be a diagonal operator and F(H')  an arbitrary 
function of the total hamiltonian H' = H + 2V. Define the symmetrized 
product [AF]s by expansion of F in powers of H' and application of the 
special rule 

[An 'h is  = 2-n Xra=0n ( ~ ) n , mAn , n -m  (4.35) 

which follows by  induction from 

[AH'n~8 = ½(H'[AH'n-lJ8 + [AH'n-lJsH').  

Consider further, instead of (3.7), the expectation value <gt I[AF]81 9t> for 
incoherent phases of the initial state 9o. An easy calculation, similar to the 
derivation of (4.15) and (4.27), leads to 

<gt I[AF],] 9t> = f A ( £ )  d £  P'(t  1*¢'~) d~ Ic(~)l ~' (4.36) 
with 

P'(t  l ~'o~) = --  (2a)-2 f~, dl f r  dl' F[½(l + l')] 

exp [i(l - -  l')t]Xu,(o~'a) = f~-oo dE F(E) PE(t [ odor). (4.37) 

Clearly, when F approximates a &function and thus picks out one energy 
shell, the quanti ty  P'  reduces to PE. The relation of PE to the total energy 
shell H' = E will be confirmed later in the case of small perturbations (see 
eq. (5.9)) and, in the general case, by the long time expression of PE for 
dissipative systems (see eq. (7.20) and the considerations thereafter). 

5. The limiting case o/small  perturbations. The object of this section is to 
show how the general master equation (4.31) reduces to the familiar form 
(3.16) when the perturbation' is very small. We note first that  the time 
variation of the functions wE(t I ~'~) and/E(t I ~'), - more exactly of integrals 
over ~' involving them -,  takes place over time intervals, the order of magni- 
tude To of which does not change when ;t --> 0. This can best be seen by 
studying the definitions (4.28) and (4.30) for small ;t. Even in this limiting 
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,case both functions converge to zero in the mean for t large compared 
to a finite time To. As a consequence a distinction must  be made, in the 
r ighthand side of the master equation (4.31), between the inhomogeneous 
term containing /E and the two homogeneous terms. The former is only 
present for times of the order of To whereas the latter, in the case of dissipa- 
tive systems, keep varying during all the time needed to reach statistical 
equilibrium. The order of magnitude T1 of the latter time is 4-~ w-l,  where 
the energy zo gives the order of magnitude of the quant i ty  WC0~. 

In  contrast with To, T1 increases as 2 -2 when 4 - +  0. For very small 
perturbations we may  therefore distinguish between two time scales, a 
short one of order To, essentially independent of 4, and a long one of order 
T1, proportional to 4 -2. The inhomogeneous term of (4.31) is effective only 
when t is of the order of the short time scale To; it then completely dominates 
the homogeneous terms, the contribution of which is smaller by  a factor 42. 
The equation can thus be written 

dPE(t[ g~o)/dt = cS(g -- oco)/E(t ] o~) for ]t] --~ To (5.1) 

with neglection of terms of order 4 2. On the other hand, when I t l  exceeds the 
short time scale and becomes of order T1, the situation is reversed. The 
inhomogeneous term becomes negligibly small, the whole time-dependence 
of PE is determined by the homogeneous terms alone and it is consequently 
very slow: 

dPE/dt ~-~ PE/T1 ' ~  42WPE.  

~'his slow time variation implies a further simplification, because in the 
time integrals of the form 

f~ dt'wE(t -- t' I o~'o~) PE(t' I ~'o%) = f~ dtlwE(tl ~'o~) PE(t -- tl I ~'0%) (5.2) 

the integration in tl extends over the short time scale, tl ~-~ To, i.e. over an 
interval in which PE varies very little. We may  therefore approximate (5.2) 
by  

t t o o  f~ dt'wE(t -- t' I ~' o~) PE(t' 1%%) = PE(t 1%o~o)f~ dtlZvE(tl ] odo~) --- 
t I = ( ~ ) - 1 / ~ ( t  1%%) l~E-~0, E+,0(~ ~). 

The last step, carried out under the assumption t > 0, follows from (4.28) 
through integration over t; the notation E ~-: i0 is used for E 4- i~ with 

> 0 very small. The master equation on the long time scale now becomes 

dPE(tl  *¢~0)/dt 4z f ~ i -- W~-,O,E-~O(O~o~ )dod PE(t I c¢' ~o) 

- -  49'fd~ ' WE-,0,E+,o(~'~) PE(t I a~o) for t ~-~ T1. (5.3) 

I t  holds for positive t. The corresponding equation for negative times is 
obtained by interchanging the two indices of ~V. 

The equations (5.1) and (5.3) have been derived under the assumption 
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To ~ T1 and they neglect corrections of relative order To~T1 ,-~ ~ .  Con- 
sistency therefore requires that  the functions [ and ~V which they contain 
should be taken to order ;t only. To this order, as shown by (4.2), the operator 
Dz reduces to its unperturbed expression (H -- 1)-1 and by substitution in 
(4.30) one finds 

l~(tl o~) = 2 a - ~  cos  [2 (~(~)  - E ) t ] .  

Integration of (5.1) for the short time scale is then elementary and gives 

PE(t [ ~o)  = ~-1[~(~) _ E] - I  sin [2(e(~) -- E)t I d(x -- ~o) for t ~.  To. (5.4) 

At the upper end of the short time scale this expression approaches in the 
mean a limit which is obviously 

PE(tl-~0) = d[,(~) -- E] d (~- -  -0) for To < t  < T 1 .  (5.5) 

The latter expression can now be used as initial value for the equation (5.3) 
relative to the long time scale. As we have seen, ~V must be taken to first 
order in 4. Substituting (H - - / ) -1  for Dz in (4.22) we find 

~7E--~0,E+I0(0¢'0~ ) = ~ d  [~(0¢') - -  E ]  TX]'(1) ^ (0¢'0t) 
""  E - - i O ,  E + i u  

where lZd(ll is the first order approximation of the function Wu, defined in • ,  //, 

(4.16). The master equation on the long time scale becomes 

dPE(tlo~o~o)/dt = 2uFfdre(m) E] W ¢1) /x~,~ d~' - -  E - - i O , E + i O k  ] 

PE(t I ~'ao) -- 2 ~ 9 ' f d £  d[e(~') -- E] W~)_~O,E+iO(a'~)PE(t[o~o~o). (5.6) 

I t  must be integrated with the initial condition (5.5). Clearly, from the 
occurrence of the d-functions in the equation and the initial condition, 
the solution has the form 

PE(tl ~o)  = d[e(c¢) -- E] d[e(*¢o) -- E] p(t I c¢~o ). (5.7) 

Substitution of this relation into (4.27) shows that  

P(t l  ~oio) = d[e(~) -- e(~0)] p(t I xx0). (5.8) 

Consequently, to first order in 2, the transition probability P( t la~o)  
contains a factor d[e(~) --  e(eo)] implying conservation of the unperturbed 
energy. We note further from (5.7) and (5.8) that  

P~(tI  ~ o )  = dEe(x) - E] P(tl ~ o ) .  (5.9) 

Substitution of this last expression into (5.6) gives, after eliminating a 
d-factor, 

dP(t l  ~0) /dt  = 2~it~fd[e(~) -- e(£)] W(1)(~£) d~' P(tl  o~'~o) 

--  2 a F f d £  d[e(~') -- e(~)] W(t)(~'~) P(t l  xx0), (5.10) 

with the abbreviation 

W(1)(,¢~¢ ') W ~x) ~~'~ for E e(~). (5.11) 
= E - i O . E + i O k  ~ I = 
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Equation (5.10) is the master equation on the long time scale, neglecting cor- 
rections of relative order 22. In  contrast to the exact equation (4.31), it invol- 
ves the transition probability P itself. I t  must  be supplemented by the 
initial condition 

P(tl  ~c¢o) = ~(~ -- ~0) for It] < T1 (5.12) 

directly obtained by comparison of (5.5) and (5.9). I t  should be noted that  
(5.12) holds for all times short compared to T1, in particular for t of order 
To. Thus, to first order in 2, P is constant on the short time scale, whereas 
PE has there a marked variation, given by  (5.4). 

Eq. (5.10) differs from the familiar lowest order equation (3.16) only by  the 
fact that  the transition rates W(1) are correct to first order in 2, while (3.16) 
contains the zero order expression of these rates *). Our reduction of the 
general master equation to its well known lowest order form is thus complete. 
The interest of this reduction is of course not so much that  it provides a 
new derivation for the familiar master equation. I t  lies rather in the clear 
and explicit picture obtained for the role of the two time scales, To and T1, 
and for the manner in which they remain completely separated if and only 
if all corrections of order To/T1 ,-, 2~ are neglected. To be sure, the existence 
of a short time scale To for all systems to which the familiar master equation 
applies has always been recognized. Still it seems to us quite instructive to 
have a more complete equation covering also the events on the short time 
scale and describing how the motions on the two time scales mix when 
To and T1 become of comparable order of magnitude. 

6. The long time behaviour o~ the transition probabilities. Returning to the 
s tudy of our system to general order in the perturbation, we want to inves- 
tigate the asymptotic behaviour of the function PE(t I ¢¢*¢0) and of the 
transition probability P(t I ~x0) for very large times, t --> 4- oo. From the 
identity 

fdocP(tlo~o~o ) = I (6.1) 

(an obvious consequence of the definition of P), it follows that  P and conse- 
quently PE must have non-vanishing asymptotic expressions for t --> oo. Our 
problem is to s tudy them. 

To find the asymptotic behaviour of PE, which in turn implies through 
(4.27) the behaviour of P, one must according to (4.26) determine the singu- 
larities of X~+~,E-z as a function of the complex variable l. These singularities 
are located on the real axis. They can be either points where the function 
has a finite discontinuity for l crossing the real axis, or points in the neigh- 
bourhood of which the function becomes infinite. The former singular points 
fill continuous intervals of the real axis. Only the latter ones, which are 

*) One should however say that  in practice ~(x) is often identical with W(°), the difference Wll,-- 
W(o) being of order ~.2. 
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isolated and will be called hereafter pseudopoles, give any contribfltion to 
P z  in the limit of long times, as is readily seen from (4.26) by deforming the 
contour ~ into lines l = E' 4- i~l with ~? very small. The name pseudopole 
is used because near such a singularity the function, while becoming infinite 
as in a pole, usually has in addition a finite discontinuity in every neigh- 
bouring point of the real axis. More precisely, the pseudopoles to be found 
for XE+Z,E-Z will be points E0 such that  the function 

(l - -  Eo) XE+~, ~ - l  

has around E0, as only singularities, finite discontinuities accross the real 
axis. Such pseudopoles may  be called of degree one. Typical examples are 
given at l = 0 by the simple functions 

l - l f L  1 (x - l)-1 dx, 1-1 +f~- l  (x - - / ) -1  dx. 

We at tempt  to obtain information on the pseudopoles of XE+I.E-~ from 
a discussion of the expansion (4.19). The function WE+z,E-z, on account of 
its definition (4.16), has no pseudopoles. Its only singularities are finite 
discontinuities accross the real axis. Pseudopoles of XE+z,E-z may  result in 
two ways from poles of the functions DE~ occurring in the expansion (4.19), 
i.e. from the presence of non-dissipative states in this expansion. Firstly 
pseudopoles may  originate from the products 

DB+z(o~)Og-~(o~), DE+z(~0)DE-~(~0) (6.2) 

which occur as factors in each term of the expansion. For example, if the 
function Dr(a) has a pole at l' = E(a) (the state ]a> being then non-dissi- 
pative), the first product (6.2) gives rise to two pseudopoles of degree one at 

l = 4- [E(~) -- E]. (6.3) 

In the asymptotic expression of Pg(t l  o~o~o) for large times such a pair of 
pseudopoles produces an oscillatory term involving 

[E(a) -- E] -1 sin [2(E(x) -- E)t]. 

This term would however disappear for large t in any integrated expression 
of the form 

f A ( ~ )  dec PE(t [ ~0)  (6.4) 

under the condition that  E(x) remains different from E in the integration. 
Since in practice integrations of the type (6.4) over ,¢ and similar integrations 
over ~0 (compare (3.15)) are usually taken, this sort of pseudopole is of little 
interest except in the case where the integral (6.4) includes points where 
E(~) = E, i.e. when the poles (6.3) of the two factors in the product (6.2) 
become coincident, and in a similar case for an integration over c¢0. 

The latter circumstances are but  examples of the second way in which 
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poles of the functions DE~z give rise to pseudopoles of XE+LE-V Generally 
airy integral of the form 

' D  ' D  ' f F ( ~ )  E+~(~) E-¢(~) d~' (6.5) 

where F(~') is some function of ~', will now be shown to have a pseudopole 
of degree one at l = 0 when the two functions DE+z have poles which become 
coincident in the domain of integration. Integrals as (6.5) occur in the ex- 
pansion (4.19) of XE+t, E-z as a result of the integrations over intermediate 
states; they occur also when integrations like (6.4) are performed over the 
states ~ or ~0. To prove our assertion we let E(~') be a pole of Dv(~').  The 
quant i ty  .[F,(o~') may be taken to vanish for E around E(~') and the function 
Gv(oV) is then holomorphic in this point. In its neighbourhood we may write 

Dv(cz') = N(~')[E(0() -- l'] -1 (6.6) 

with the notation, already introduced in (I. 5.8), 

[N(~')] -1 = 1 + Jl 2 [OG~(~')/Ol]~=m~, ~. (6.7) 

In those parts of the domain of integration in (6.5) where E(~') :/= E the 
two factors D have their poles at different/-values, the integrand has only 
poles of degree one, producing after integration finite discontinuities 
across the real axis. Consider now the case that  the domain of integration 
contains a manifold where E(o~') -= E.  For ~' in its immediate neighbourhood 

D ' the poles of E+~(x ) may be studied by  means of the approximate expression 
(6.6), which gives in the integral 

fF(o~')[N(m')]~(E(m') - -  E - -  l ) - l (E(~ ' )  - -  E + l)- i  dm' = 

= (21)-lfF(o()[N(o~')] 2 [(E(a') -- E -- l)- i  .-- (E(~') - -  E + l)-l] da'. (6.8) 

In this form the occurrence of a pseudopole of degree one at l ----- 0 is obvious. 
Since the expansion (4.19) contains terms with simultaneous integrations 

over several states and since, as we have just seen, each such integration 
may  give rise to a pseudopole of degree one at l ---- 0, it might look as if more 
complicated singularities will result f rom superposition of pseudopoles of 
degree one. I t  will now be shown that  such complications never occur. For 
this purpose we need considerations very similar to those of I, Section 4. 
We have there defined for each state [~> the family x~ composed of the 
states ]~'> which play an effective part  as intermediate state in the righthand 
side of the equation (see (4.3)) 

[~> G~(~) = {VD~V --  ~VD~VDzV + ...},a [~>. 

We can here formulate this definition more simply in terms of the function 
Wm(-'~) introduced by  (4.16). The family x~ is composed of the statesl~'> 
for which the function Wm(~'~) of the complex variables l, l' is not identically 
zero. This family can in practice always be pictured as a set of continuous 
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manifolds in the space of the quantum numbers characterizing tho states 
la'>. In Section 4 of I another set of states was also defined, the family y~ 
obtained by  taking together all states of x~, all states belonging to the families 
xo,, associated with the latter states, and so on. On account of (4.19) an alter- 
native definition of y~ is the following: y~ is composed of the states la'> for 
which the function Xu,(a'a) of the variables l, l' does not vanish identically. 
The physical interpretation of the family y~ was given in I for the special case 
of non-dissipative systems. This interpretation is valid for a state la> as 
soon as it is itself non-dissipative, irrespectively of the properties of the 
other states. Another interpretation holds more generally, also" when la> 
is dissipative; y~ is simply the set of all states [£> which get involved in the 
time evolution of a wave packet initially concentrated very narrowly around 
Ea>. The family x~ has no special physical significance; in practice it is 
always found to coincide with y~. 

The property of the family y~ which we have to use presently is the 
following. Whenever Dz(a) has a pole at l = E(a), the functions Dz(£) 
belonging to all states la'> of y~ are regular around l = E(x) and those 
belonging to states la'> such that  la> is in y~, have a finite discontinuity 
for l crossing the real axis at l = E(a). As was shown in Section (I. 4), this 
property is a direct consequence of the identity (I. 3.13) or (4.3). Consider 
now the general term of the expansion (4.19) of XE+z.E-z. It  reads 

;t2(n + 1)DE+~ (a)DE-Z (a) f WE+Z, E-Z (aan)DE+z (an)DE-~ (an) dan . . .  

• .. dal  WE+~.E-Z(alao)DE+z(ao)D~:-I.(ao). (6.9) 

Take any sequence of states a, an . . . .  al, a0 for which the integrand does 
not vanish. The family y belonging to any element of the sequence contains 
all elements of the sequence situated more to the left. From the property 
just mentioned it follows then immediately that  if in (6 .9 )  the two factors of 
a product 

OE+z(aj)OE-z(aa) (6.10) 

have coincident poles at l = 0 no other such product appearing in (6 .9)  c a n  

have the same singularity. 
The singularities of X~+lE-z(aa0) which are produced by  poles of Dz- 

functions are thereby completely described: except for finite discontinuities 
accross the real axis and uninteresting pseudopoles which disappear when 
integrations are carried out over ~ and a0, the only possible singularity !s 
a pseudopole of degree one at l = 0. I t  is remarkable that  the latter type 
of singularity also occurs when none of the Dr-functions involved in the 
expansion of X has a pole at l' = E in the domain of integration. This is 
best seen on the basis of the simple equation 

DE+z(a0) - -  DE-~(a0)  = 21f da XE+z, E-Z(aa0) (6 .11)  
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which is easily derived by taking the diagonal palt  of the well known iden- 
t i ty  

R l  - -  R v  = (l - -  l ') R ~ R v  

and applying the definition (4.14) of X. Obviously, whenever Dv(o~o) has 
a finite discontinuity for l' crossing the real axis at the point E (i.e. whenever 
]E(a0) ~ 0) the integral in the righthand side of (6.11) has a pseudopole 
of degree one at l = 0. Consequently the function XE+z. ~- z (~a0) must  then 
have the same singularity, at least for some range of values of c¢. This 
pseudopole must occur irrespectively of the presence or absence of poles 
in the D-functions involved in X. We also note that  it cannot reduce to a 
true pole, because for non-vanishing rE(a0) the limit of the whole expression 
(6.11) for l --> 0 is different depending on the sign of I m ( l ) .  

When, in the expansion (4.19) taken for XE+z.E-z, none of the Dr-functions 
involved has a pole at l '  = E ,  the individual terms of the expansion have 
no singularities other than finite discontinuities across the real axis. The 
occurrence, for JE(~0) e e 0, of a pseudopole in the total expression XE+~,E-Z 
(~*¢0) must then be attr ibuted to the fact that  the expansion becomes 
divergent when l vanishes. This lack of convergence can be verified by 
considering for the case under discussion the convergence properties of the 
expansion (4.19) in the limit of small ~t. In  this limit we may  put everywhere, 
according to (4.17), 

W~,(~'~) = W(0)(~'~) 

and we may approximate all functions D by 

Dr(a )  = e(o~) - -  l '  - -  ;t2K,,~,(~) :{: i a z f , , ~ , ( x )  (6.12) 

where the upper (lower) sign must be taken for positive (negative) value 
of I m ( l ' ) .  The terms in 2 2 are important  only when l' is near e(a'). Using the 
approximation (6.12) we find 

DE+z(~)DE-z(~z) = {[e(~) - -  E - -  12K,(~,(~)]2 + [Jl21,(=)(¢¢) =F/ l ]~ .}- l .  (6.13) 

We are interested here in the case where Dv has no pole at l' = E. In the 
approximation (6.12) this condition is 

J,,~)(~) ¢: O. (6.14) 

When it is verified (6.13) remains bounded in the neighbourhood of l ----- 0 
and in this point an integral of the form (6.5) becomes approximately 

f F(o~')DE+z(c¢') DE-z(¢¢') dod = f F ( ~ ' ) { [ e ( e ' )  --  E -- ;{9'K,(~.,(e')]~' + 

+ A411,(~,,(~')]9} -1  din' = ~ A - ~ f  [J,(=,) ( ,d)]- .  1 F(m') 8[e(c¢') - -  E]  dot'. (6.15) 

I t  is consequently very large, of order )t -9. Returning now to the expansion 
(4.19) for XE+~, E-z, still in the case of small 4, we observe that  when going 
from an arbitrary term of the expansion to the next, one gets an additional 
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factor t z and an additional integration of the type (6.15). The coefficient t -2 
occurring in the latter integral for l = 0 compensates the factor ;t 2, thus 
explaining why convergence of the expansion cannot be achieved by  taking 

small enough. I t  should be noted that  this compensation occurs only at the 
point l = 0. For all other values of l (even infinitely close to the real axis) 
the integral (6.15) remains finite when ;t -> 0 and nothing prevents the in- 
creasing powers of 2 in front of the successive terms of the expansion to 
ensure its convergence. No other singular points than 1 = 0 can therefore 
originate from lack of convergence of the series (4.19) for XE+z..E-v 

We have encountered two different origins for the pseudopoles of the 
expression XE+~. z-z, the first one being a pole of Dv(~') at l' = E for states 
[~'> included in the domains of integration (or appearing as initial or final 
state), and the second one the divergence of the expansion of XE+z. E-z at 
l = 0. Jus t  as we have seen that  poles of Dv never can have a cumulative 
effect and produce higher order singularities by  superposition of pseudopoles 
of degree one, no such cumulative effect can originate from the simultaneous 
occurrence of poles of D-functions and of a divergence in the expansion. To 
verify this point, we consider in the expansion of XE+z. E-z all terms (6.9) of 
order n > m > 1, leave out the integrations over the intermediate states 
~1 . . . .  ~ ,  but  perform those over all other intermediate states. The result is 

22mXE+~. E-Z(o~n) WE+Z. E-Z(~,n~on-1)DE+z(~,n-1)DE-z(~m-1) ... 

• .. DE+I(cq)DE-~(~Zl) WE+L E-~(~lO~o)DE+z(~o)DE-z(O~O). (6.16) 

Assume now that  ~ - 1  would be such that  D v ( ~ - l )  has a pole at l' = E. I t  
is then just as impossible for XE+z.E-Z(a*tm) to have a pseudopole due to 
lack of convergence as to have one caused by  poles in other D-functions. 
Indeed, from our  assumption and from the property of the family y already 
used before, Dg(od) is regular at l' = E for all states ~' in the family Y~--1, 
thus in particular for the state 0~m. This implies 

limz_~ 0 [DE+~(~) -- DE-~(~)] ---- 0. 

Comparing with (6.11) we must indeed conclude that  no pseudopole occurs 
in XE+I,E-Z(~,,).  

This ends our determination of the singularities of XE+z. E-Z(~0). Leaving 
out of consideration, when one of the states x, ~0 is non-dissipative, pseudo- 
poles which disappear when an integration over these states is carried out, 
the only singularities we have found are finite discontinuities across the 
real axis and a pseudopole of degree one at l = 0. It  is this last singularity 
which determines the asymptotic behaviour of PE(t[ *tx0) for long times. 
Indeed it follows from Eq. (4.26) that  

lim ~±oo PE(t [ ~0)  = w -1 lim 0<~-~0 ~X~,~ .  E~,l(~*t0) (6.17) 

where upper (lower) signs must be taken together. When the state x or 
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~0 is non-dissipative this relation holds after averaging over the time or 
integrating over ~ or ~0. Otherwise it is strictly exact. From (6.17) the asymp- 
totic value of the transition probability follows 

= f-oo dE lim0<~_~ 0 ~XEt:OLE±I~(o~O~O). (6.18) limt_~+= o P(t I :¢o~o) ~-1 oo 

We note that  the quanti ty  (6.17) is non-negative; this follows from the 
definition (4.14), which implies more generally that  Xu.  is never negative. 

The last task is the determination of the limit in the righthand side of 
(6.17). On physical grounds the result is expected to depend very strongly 
on the nature of the system and on the dissipative or non-dissipative 
character of the states involved. For this reason a unified treatment appli- 
cable to all cases is not possible. An exhaustive analysis of the various 
possible situations seems at present very difficult. Here we shall restrict 
ourselves to the extension to general order of the case of dissipative behaviour 
which is usually discussed in lowest order on the basis of the master equation 
(3.16). However, before studying this case in the next section, we want to 
mention for the sake of completeness the value taken by (6.17) for the non- 
dissipative systems studied in I and n .  The calculation of the limit (6.17) 
for such systems is very simple because the pseudopole of XE+z.~-z is here 
entirely determined by  the poles of the D-functions. Assuming as in I and 
n that  each function Dr(e) has only one pole E(e), one finds 

limt~+oo PE(t I ~xo~o) = IN(or)] 2 5[E(~x) -- E] 5((z --  cto) 

+ 22[N((x)] 2 6[E(o¢) -- E ] f  WE-,o. E+,0(otoq) dotlXE-,o. E+,o(o~lOCO) 

+ 2zf  XE-to. E+to(~oq) doll WE-,o. E+,O(CCl~Xo)[N(oto)] ~ 6[E(czo) --  E] 

+ 2 4 f XE-,O. E+io(ct~a) dots WE-~O. E+~0(~Sc¢2)[N(cz2)] 2 

0[E(~2) -- E] dc¢2 WE-iO ~+io(~2~1) d~IXE-,o.~+,o(~I~O). 

The limit for t -+ -- oo is found by  interchanging the indices E + i0. The 
symbol N(,¢) was defined in (6.7). This result is susceptible of a simple 
interpretation in terms of the perturbed stationary states of the system, 
know from II, but  we shall not describe it in the present paper. 

7. The approach to statistical equilibrium. I t  has often been shown how the 
lowest order master equation (3.16) implies that  the system studied ap- 
proaches microcanonical equilibrium under the influence of the perturba- 
tion 6). The assumptions on which the derivation is most customarily based 
are the symmetry of the transition rate matrix, reading in our notation 

W(°) (~'¢¢) = W(°)(:~'i, (7.1) 

and the interconnection of all states of equal unperturbed energy, by  which 
is meant that  for any two states :~, ~' verifying 

= 
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there exists a sequence of states connecting them 

= ~o,  ~1 . . . .  a n ,  c~n+l = ~ '  ( 7 . 2 )  

with the properties 

s(~j) = e(=j+i), W(°)(=j+] =j) :# 0, (i = 0 . . . .  n). (7.3) 

Under these assumptions the long time limit of P is found to be in our 
notation 

limt_~±ooP(t[ ~o)  = {f6[s(~') -- e(~)] d~'} -1 • ~[e(~) --  s(~.0)]. (7.4) 

I t  corresponds to the microcanonical equilibrium distribution in absence 
of the perturbation, as is consistent with the lowest order nature of (3.16) *). 
I t  should be noted that the assumption of interconnection of states auto- 
matically implies that  all states ~ are dissipative; indeed it implies that  each 
state a is contained in its own family of states y~, a situation incompatible 
with the occurrence of poles in Dr(a) (see I, section 4 or section 6 of the 
present paper). 

The symmetry property (7. I), often referred to as principle of microscopic 
reversibility or principle of detailed balance, is usually claimed to be an 
immediate consequence of the hermiticity of the perturbation V, on the 
ground that  W<O>(o~'o~) is essentially the absolute square of the matrix element 
<a' IV] ~>. Although of course partly valid, this argument is oversimplified. 
Taken in the framework of our analysis, it disregards the fact that  the 
diagonal part must be taken in the definition (3.17) of W(O>. Let us consider 
for example (see appendix) the. system composed of one Bloch electron in 
interaction with the lattice vibrations of a crystal. We choose for ~ one 
electron states with the lattice in its unperturbed ground state and for ~' 
states where, in addition to the electron, a phonon is present. The quanti ty  
W<O)(o~ ') then vanishes identically, whereas W<O>(o~'~) has non-vanishing 
values, even on the energy shell s(a) = s(~'). Clearly (7.1) does not hold. 
Still the master equation (3.16) is fully applicable and describes in the limit 
of small phonon-electron interaction the dissipation of a state ~ with one 
electron and no phonon present into states where one, two, etc. phonons 
have been emitted by  the electron. The vanishing of W<°>(o~o~ ') corresponds 
to the physically obvious fact that a state with one electron and one phonon 
will never dissipate, i.e. never go over for arbitrary phases, into a state 
without phonon; in other words phonon absorption by  the electron is a 
phase dependent, transient process. 

It  is only for states with a very large number of elementary excitations 
present (of the order of the size of the system), in the foregoing example 

• ) T h e  c u s t o m a r y  d i scus s ion  of these  m a t t e r s  t r e a t s  t he  s t a t e s  ct as d i scre te .  In  o u r  p r e s e n t a t i o n  

t h e y  a re  c o n s i d e r e d  as c o n t i n u o u s ,  b u t  e v i d e n t l y  we cou ld  also,  b y  g r o u p i n g s  of s t a t e s ,  go  ove r  to  a 

f o r m u l a t i o n  in  t e r m s  of d i s c r e t e  indices .  
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states with many phonons, that  the symmetry property (7.1) can be ex- 
pected to hold. For such states, - and most states are of this type  for a large 
system not too close to its ground state - ,  one expects that  if transitions in 
the neighbourhood of ~1--> ~2 contribute to the value of W¢0~(~'~) at 
a¢ = ~q, c¢'~ = ~2 (see (3.17)), the transitions in the neighbourhood of ~2 ~ ¢q 
will contribute the same amount to W¢0~(~1~2), thus giving rise to the sym- 
metry  (7.1). Similarly, for such states, if a succession of transitions al -+ ~9. -> 
... -+ an and its neighbouring ones contribute to the value at ~ = ~1, ~' = ~n 
of the function Wu,(~'a) defined in (4.16), the transitions around ~n-~. . .  
• .. ~2 -~ ~1 are expected to contribute to Wu,(~l~n) and the hermiticity of 
V now gives the generalized symmetry  relation 

Wu,(~'a) = Wvt(aa'). (7.5) 

For a detailed verification of this conclusion in an actual case, e.g. for the 
electron-phonon system of the appendix (considering only states where the 
number of phonons is of order N or O), the labelling of the states ~ by  the 
wave vectors of the elementary excitations, as described in Section 2, is not 
very convenient and it would be replaced with profit by  a different one, 
namely a labelling by  the numbers of excitations of each sort per small cell 
of wave vector space. The coordinates of the cells where these numbers are 
changed in the transitions caused by  the perturbation would then play the 
role of the continuous variables present in our integrals. 

For our discussion of the approach toward equilibrium to general order 
in the perturbation 2V, we adopt the property (7.5) as the basic assumption 
generalizing (7.1). As for the assumption of interconnection of states, we 
keep it in the same form as above: for every pair ~, ~' of states of equal 
unperturbed energy there exists a sequence (7.2) verifying (7.3). We note 
again that  it implies the  dissipative property for all states ~, and thus the 
boundedness of the function Dg~,0(a). Under these assumptions, we shall 
establish that  for 2 not too large one has 

lim~±.o PE(t [ ~0)  = [fAB(~') d~'] -1 . AE(~)AE(~o), (7.6) 

with the abbreviation 

AE(~) = (2z~i)-l[D~+,o(o~)--DF.--to(~)]. (7.7) 

If one remembers the relation (4.27) between PE and P,  and notices that  
(7.7) reduces to 8[e(a) --  E] in the limit of small 2, one readily sees that  in 
this limit (7.6) gives the lowest order value (7.4) for the long time expression 
of P .  We now proceed to prove (7.6). We shall show afterwards that  this 
result corresponds to establishment of the microcanonical equilibrium 
distribution in presence of the perturbation. 

Introducing the notation 

limt_~*** PE(t [ ~a0) = q~(~0),  (7.8) 
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we recall the main result of Section 6, equation (6.17), 

q~ (~o) = ~-1 lim ~/XE÷~. ~ , 1 ( ~ o )  (7.9) 

where ,/ is a positive number  tending to zero. We note incidentally tha t  
in view of the relation (4.19) between X and W, the symmet ry  relation 
(7.5) implies a similar property for X:  

Xu.(a'~) = Xz.z(aa') (7. I0) 

and consequently, from (7.9), 

= (7.11) 

We have ment ioned earlier tha t  the assumption of interconnection of states 
requires the function D~±,o(a) to be bounded. As we have seen in detail in 
Section 6, the limit (7.9) originates then entirely from divergence of the 
series (4.19) when l and l' approach from opposite sides the point E of the 
real axis. F rom the boundedness of DE,,o(o~), the first term in the r ighthand 
side of (4.19) gives a vanishing contribution to the limit (7.9). The latter  
consequently verifies the two following equations: 

q~(aa0) = 2ZDE+~o(a)DE-~o(a)f WE:~,0.B~0 (aa') d~' q~(a'ao), (7.12) 

q~(ao~o) = 22 f q~(o~a') d,t' W~,o.E+,o(a'a0)DE+,0(a0)DE-~o(a0). (7.13) 

Our determinat ion of qE will be based on the first; one could however use 
the second one as well *). Equat ion (7.12) shows tha t  qE is eigenfunction 
of an eigenvalue problem. It  belongs to the eigenvalue 1. 

Consider this eigenvalue problem in the limit of small 2. Since we are deal- 
ing with the  dissipative case, equation (6.14) holds and we may  use equation 
(6.15), which states tha t  one has approximately 

22DE+,o(a)DE_,o(,t) -- ~[j,,=,(~)]-i 8[e(a) _ E]. 

The quant i ty  ] must  be taken in the limit t -+ 0; its value is then 

], ,~(~) = ~ f d ~ '  ~[e(~') -- e(a)] W(°~(~'~). (7.14) 

The limiting form of the eigenvalue equat ion is 

= - E ]  f (7.15) 

The solution is necessarily of the form 

q~(~ao) = O[e(a) -- E]/(a) 
with 

/(a) = ~[ / , ,~ , (a ) ] - l f  W(O)(aa') ~[e(~) -- e(x')] da'/(a'). 

The latter  equat ion is to be taken on the energy shell e(~) = E only. The 

*) An equation closely connected to (7.12) would be obtained by inserting (7.8) in the master 
equation (4.31). The form (7.12) i s  however more practical for the following considerations. 
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function ](~) = constant is a solution: as results immediately from (7.14) 
and the symmetry  relation (7.5) in its lowest order form (7.1). Using the 
non-negative nature of W(Ol(o~o~ ') and the assumed interconnection of all 
states on the energy shell e(~) = E, one furthermore concludes by a well 
known argument e) that  the solution mentioned is the only one. Finally 
the transposed eigenvalue equation of (7.15), which is 

q' (~ ' )  = z~fd~ q,(~)[f~(~,(~)]-I 6[e(~) -- E] W(°)(~ ') 

is easily seen from (7.14) to have the solution 

q'(~) =- ~rfd~'  d[e(~') -- E] W(0~(~'~). 

This solution is not orthogonal to the unique solution we have found for 
(7.15). As a consequence of known theorems 7) we can therefore conclude 
that  the eigenvalue 1 is a simple root of the characteristic equation of the 
eigenvalue problem. 

The latter property, just established in the limit of small ;~, implies by  
continuity that  for JR1 smaller than a positive quanti ty  Ic the characteristic 
equation of the exact eigenvalue problem (7.12) has one and only one root 
in the neighbourhood of 1, and that  this root is simple. The corresponding 
eigenfunction is consequently unique (except for an arbitrary multiplicative 
constant). We show now that  the root in question is 1 and that  the corre- 
sponding eigenfunction is BE(or), as defined by (7.7). For this purpose we 
insert AE(e') instead of qE in the righthand side of (7.12). Applying the sym- 
metry  relation (7.5), we obtain for the integral 

(2~ / ) - l f  [DE+,O(a') -- D~-~0(c¢')] d*c'WEe,0Ev,0(e'c¢). 

In view of the identi ty (4.21) this expression is simply, for both values of the 
double signs, 

(2 i)-1 - -  

The righthand side of (7.12) is thus equal to 

(2zd) -1 )t 2 [GE+,o(~) -- GE-,o(~)]DE+~o(o~)DE-,O(O~). (7.16) 

We make use of the identity (4.23) for l = E + iO, l '  = E - -  iO. In view of 
the boundedness of DE±lo, the term in l - -  l '  gives no contribution and (7.16) 
reduces to 

(2m:) -1 [DE+,o(~¢) -- DE~o(a)] = AE(*¢). 

Our statement is thereby established. 
On the basis of the foregoing, the determinfftion of q~: is easily completed. 

From the unicity of the eigenfuction AE(c¢), it is clear that  qE must have the 
form 

= ( 7 . 1 7 )  
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Remembering the identi ty 

DE+z(~0) -- DE-z(~0) = 2lfdo~ XE+Z.E-Z(~0) 

already mentioned in (6.11) we find from (7.9) and (7.7) 

f d~ q~ (a~o) ---- AE(~o). 

Insertion of (7.17) gives 

/~(o~o) = [fAE(o~') d£]  -1 AE (~0) 

independently of the double sign. We have thereby established, for [2[ < he, 
the announced expression (7.6) for the long time limit of Pz. 

From (7.6), the long time limit of P is 

limt-.+ooP(t [ ~o)  ----f~oo dE [ f  AE (,d) dod]-i AE(0¢) AE(~o). (7.18) 

We shall denote by T a time such that  this limit is practically attained for 
It[ > T. This is the time T already considered in Section 3. Let our system 
be at time t = 0 in the quantum state 

90 = f  [¢¢> da c(:¢) (7.19) 

and let us assume this initial state to have phases sufficiently incohe- 
rent for the interference term (3.13) to remain negligible over the time 
interval It] <~ T. The expectation value at time t of a diagonal operator A is 
then given for It[ < T by the formula 

<A>t = fA(c¢) d,¢ P(t[o~o~o) dot0 [ c(c¢0)[ 2. 

In view of (7.18) it approaches for t --> + T the limit 

lim <A >t = f ~ o  dE <A >EP~, (7.20) 

where we have put 

<A)E = [fA~(c¢')dGt']-l/A(a)AE(*¢)da, (7.21) 

pE = f ]c(a) 12 AE(~) da. (7.22) 

As will now be established, this limit agrees with the value which would 
be calculated for A from the microcanonical distribution taken for the 
complete hamiltonian H + 2V. We introduce to this end the projection 
operator QE on the energy shell H + IV = E, given by 

QE = (2~i) -1 lim,/-~0(RE+~v -- RE-~), ~ > O, 

and already used in II,  Section 2. Note that  the diagonal part  {QE}a of 
this operator is simply the diagonal operator AE, the eigenvalues of which 
are given by (7.7). The microcanonical average of a diagonal operator A 
on the energy shell H + ;tV = E can be written as (Sp denotes the trace) 

Sp(AQE)/Sp(QF,). 
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Calculating the trace in the ]~>-representation,-one can replace QE by its 
diagonal part  Am and, in the limit of an infinite system, one finds the ex- 
pression (7.21). Consequently the quant i ty  <A>E is the microcanonical 
average of A on the shell of total energy E. On the other hand, when the 
system is in its initial state (7.19) the probability for the total energy H +AV 
to have a value between E and E + dE is 

<90 ]QE] 90> dE. (7.23) 

In view of the phase incoherence of the amplitudes c(x), the only contri- 
bution to (7.23) comes from the diagonal part  of QE. The expectation value 
<9o IQEI 90> thus reduces to (7.22) and we conclude that  PE gives the 
probability distribution of the total er~ergy in the initial state. The announced 
result is thereby reached: the righthand side of (7.20) is the microcanonical 
average of A corresponding to the statistical distribution of total energy 
in the initial state 9o. 

We end with a few comments on the results of this section. I t  is only for 
diagonal operators A and for initial states ~00 with rapidly varying phases 
that  we have established the approach to microcanortical equilibrium values. 
The first restriction has already been discussed in Section 3. One would 
expect the approach to equilibrium values to hold true for a wider class 
of operators, to know the operators which have simple matr ix elements in 
the [~>-representation, even in the limit of a large system. Such an extension 
of our results would however require a proper generalization of our mathe- 
matical treatment.  As for the second restriction, its only purpose is to make 
the contribution of the interferenceterm (3.13) negligible for a time interval 
as long as T *). The more rapidly the phases of the initial amplitudes vary, 
the longer will be the time interval over which no interference effects occur. 
More cannot be said in general, however, because one can imagine initial 
states such that  <A >t, having reached the equilibrium value (7.20) at a time 
t ~-~ T, retains it for a time much longer than T whereupon a new deviation 
from the equilibrium value sets in because of a sudden appearance of contri- 
butions from the interference term. 

It  should be clear that  the  assumption of rapidly varying phases for the 
initial state 90 has little in common and is even in contradiction with the 
conventional assumption of incoherent phases at all times. The former 
assumption singles out the initial state and implies for all t :# 0 coherent 
phase relations between the amplitudes ct(~) of 

9t = exp [-- i(n + ~V) t]~00 = f I~> d~ ct(~). 

These phase relations-are all-important when the effects of the perturbation 
are taken into account to general order. I t  is only to lowest order that  their 

*) We note tha t  for/lcc smaU enough initial s ta tes  of the type considered in (3.19), (3.20) sat isfy 
this property.  They  form another  class of s ta tes  for which (7.20) holds. 
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influence is weakened: it may  then for example be neglected in the deri- 
vation of the master equation but remains essential when time inversion is 
applied to the system 1). To general order in the perturbation, the initial 
time t = 0 is completely singled out by its incoherence of phases. Starting 
from it, the system behaves dissipatively both toward the future and toward 
the past. This is why the general master equation (4.31) imparts a special 
role to the instant t = 0. This special role is no longer explicitly visible in the 
lowest order master equation (3.16), but it is still implied by it, because, as 
is well known, a non-stationary solution of (3.16) cannot be continued 
indefinitely toward the past without taking negative values. In connection 
with the coherence of phases of the amplitudes ct(~) for all non-vanishing 
times, we may  also mention the close relation of this property with the non- 
markovian nature of the general master equation (4.31). This non-markovian 
nature can be understood as resulting from interference effects between the 
various waves produced by the perturbation. Such interference effects are 
a manifestation of definite phase relationships. As was discussed in detail 
in A, they become negligible for small perturbations, and this circumstance 
is responsible for the markovian character of the lowest order equation 
(3.16). 

Our discussion of the approach to statistical equilibrium has been carried 
out under the assumptions of symmetry  (7.5) and of interconnection of 
states. I t  is for systems with a large number of excitations present (of the 
order of the number of particles in the system) that  we may expect these 
assumptions to hold. For such systems, the master equation (4.31) can be 
used to follow in detail the time evolution of the system toward equilibrium. 
There are however also other situations to which the master equation is 
directly applicable, namely all situations where initially a very few ex- 
citations are present in the system, so that  the dissipative process consists 
in their decay into an ever increasing number of other modes of motion. 
An example of this sort, the system composed of one Bloch electron in 
interaction with a lattice initially in its ground state, has a.lready been quoted 
and can in principle be studied completely starting from the equations in 
the appendix. In such cases of shower-like processes it is no longer strictly 
possible to describe the long time behaviour of the system as an approach to 
equilibrium, because the total excitation energy is too low. One must rather 
think in terms of a shower phenomenon which, governed by the master 
equation, continues as long as dissipative states are involved and can only 
be interrupted if and when low-lying non-dissipative states are reached. 

Appe~ldix.. We illustrate in this appendix a few aspects of the general for- 
malism used throughout the paper by considering a special example. We 
assume a perfect non-conducting crystal, add a few electrons in the lowest 
unoccupied Bloch band and consider their interaction with longitudinal 
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lattice vibrations (to be called phonons). The hamiltonian of this system is 
composed of a part H for the non-interacting electrons and phonons, and a 
part  2V describing the interaction. In the simplest approximation one has 

H = •k e(k) ~*~k + •q to(q)a*aq, (A.1) 

2 V  = i ~  (8~3/~¢'~) ½ ~ Z k , q  [ ~ ( q ) ] ½ ( a ~ 0 t ~ - - q 0 t k  - -  0t~0~k--qaq) .  (A.2) 

We have put  h = 1. The wave vector and energy of an electron are re- 
presented by  k, e(k), the corresponding quantities for a phonon by  q, co(q). 
One often adopts for the energies the simple expressions 

e(k) = [klZ/2m, o~(q) = slq I. (A.3) 

A very important feature is that  the electron velocity ]k[/m is usually much 
larger than the phonon velocity s. This fact is essential for the dissipative 
nature of the electron states. The operators a, ~ and a*, c¢* are the annihila- 
tion and creation operators for phonons and electrons. We have 

* * ---- l ,  C¢kC¢* -{- C¢*C( k 1. (A.4)  a q ~ q  - -  ~ q a q  

All other commutators of a, a* and all other anticommutators of ~, ~* 
vanish. Every a or a* further commutes with every ~ or =¢*. The volume of 
the crystal is O. We assume it to have a cubic shape and quantize the wave 
vectors q, k so as to verify periodic boundary conditions. The constant y 
can be written 

= (d/m)½ (h.5) 

where d is the lattice constant. The dimensionless constant ;t is then not far 
from having the order of magnitude one in realistic cases. We remark that  
electron-electron and phonon-phonon interactions as well as the electron 
spin are completely neglected in the hamiltonian (A. 1), (A.2). 

The unperturbed representation 1~), as introduced in Section 2, is com- 
posed of the following states 

* ... ~* a* a* 1 0 >  (A.6)  ]kl  . . . .  kn ,  q l  . . . .  q r  > = (•/87[3) (n+r)/2 ~ k  I kn qx " '" qr  " 

[0) denotes the no-electron, no-phonon state. It  corresponds to the case 
where the Bloch band is empty  and the lattice in its ground state. We 
assume for simplicity all k-vectors to be different, and we assume them to 
be written in succession according to a prescribed order.The same assumption 
is made for the q-vectors. We avoid in this way formal complications which 
are known from the practice of quantum field theory to play no role in 
actual calculations. Under our assumptions we have, in the limit ~ -+ oo, 

t t 
( k l  . . . .  kn, ql  . . . .  qr ! kl . . . .  kn,, ql  . . . .  qr')  = 

5n,vSrr, 5(kz -- k '  I) ... ~ ( k n -  k'n) 5(ql --  q'l) "'" ~(qr --  q:) (A.7) 
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where the 6-functions originate from Kronecker symbols through 

lim~_~=o (f2/8~) 6kk, = 6(k -- k') (A.8) 

and similarly for q-vectors. (A.7) corresponds to eq. (2.2) of the text. In the 
representation (A.6) the perturbation V has matrix elements with a simple 
limiting expression for f2 --+ oo. One finds for example by application of 
(A.8) 

<k, q IVI k'> = a(k + q - -  k') ,  (A.9) 

<k, ql, q2 IvI k', q'> = iy[o~(ql)]½6(k + ql -- k') x 

× 6(q2 -- q') + iy [o)(q2)] i 6(k + q2 -- k') 6(ql -- q'). (A. 10) 

The calculation of matrix elements <~[ VA1 V ... A n V  [£> with diagonal 
A1 . . . .  A,~ can be performed either by application of equations of the type 
(A.9), (A.10), or by direct use of (A.2) for finite ~,  the limit Q --~ oo being 
taken at the end of the calculation. We illustrate on the case n = 1 the 
occurrence of diagonal parts. In the evaluation of <k, q IVAVI k', q'> the 
possible transitions• are 

k, q +- k" +- k', q', 

k, q +- k", q, q' +- k', q', 

k, q +- k", q', q" =# q +- k',  q'. 

In the last transition scheme the same phonon q" is emitted and reabsorb- 
ed, whereas in the last but one q is emitted and q' absorbed. The cal- 
culation gives 

<k, q IVAVI k', q", = 726(k -- k') 6(q -- q ' ) f A ( k  -- q", q, q") co(q") dq" 

+79' 6(k + q -- k ' - :  q') [A(k+  q) + A(k ' - -  q, q, q')] [co(q) co(q')]~. (A.11) 

The first term in the righthand side, which originates from the third tran- 
sition scheme, is the diagonal part of the matrix element. The second term 
stems from the two first transition schemes. 

We take next the case n = 3 to illustrate the concept of irreducible 
diagonal part. The transition schemes contributing to the diagonal part of 
<k, q [VA1VA2VA3V I k', q'> are easily seen to be 

k, q +- ks, q, q2 +- k~, q, ql, q2 +- kl, q, ql  ~-- k, q 

k, q +- kl, q, ql  +- k2, q, ql, q2 +- kl, q, ql +- k, q 

k, q + -  k2, q, q2<-- k, q < -  kl, q, q l < -  k, q 

Only the first scheme contributes to the irreducible diagonal part. The 
second one involves the diagonal part of the subproduct VA2V, while the 
third scheme involves the diagonal parts of V A I V  and VAaV. Similar 
examples can be worked out for states involving more than one electron. 
The formal analogy of such calculations with the quantum theory of fields 
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is of course striking. One can in particular introduce a graphical represen- 
tation of the transition schemes by means of Feynman diagrams, a method 
which has already been applied to a Fermi gas with interactions by G o l d -  
s t o n e  s) and H u g e n h o l t z  4). 

Before closing we still calculate to lowest order in 2 the functions Gz(~) 
and Wu,(~'~).  One finds directly from (A.11) 

Gz(k, q) = ,/2f [e(k -- q') + co(q) + ~o(q') -- l]-ico(q') dq', 

k' ' ' = ' - -  ' k]. Wu,( , ql ,  qs; k, q) ;J%o(ql) dt[q' s q] ~[k' + ql  - -  

The phonon q is seen to play no role in these functions, except for a shift 
in l, l'. One can easily calculate such functions to higher order and determine 
in this way  the quanti t ies /E and wE which enter the master equation (4.31) 
for the case at hand. 
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